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Abstract 

In Experiment 1, 500 words were presented to 75 participants in five different word 

identification tasks (lexical decision, semantic categorization and three speeded naming 

tasks) to investigate differences between the reaction time (RT) distributions, and 

evaluate the basis of effects of word frequency and animacy, in different tasks. 

Experiment 2 collected delayed naming latencies for the same words to establish that the 

observed naming effects were not due to production-related characteristics of the items. 

Low frequency words yielded more skewed distributions than high frequency words in all 

tasks except delayed naming, but the differential skew was most marked for tasks that 

required lexical discrimination. The semantic categorization task yielded highly skewed 

distributions for all words, but the word frequency effect was due to shifts in the location 

of the RT distributions rather than changes in skew. The results are used to evaluate the 

relative contributions of a common lexical access process and task-specific processes to 

performance in lexical discrimination and naming tasks.  
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Distinguishing common and task-specific processes in word identification:  

A matter of some moment? 

Visual word recognition is one of the most intensively researched domains in 

cognitive psychology. Although models and theoretical interpretation have increased in 

sophistication, the methodologies used to investigate the domain have remained fairly 

constant (but see Balota & Abrams, 1995) and relatively crude. Research has relied 

almost exclusively on comparisons of average speed and accuracy of performance for 

different stimulus classes and/or tasks. Such comparisons may, however, lead to 

imprecise, or even misleading conclusions about the processes underlying performance 

(e.g., Miller, 1991).  Rather than reflecting a simple change in the location of the RT 

distribution, changes in mean RT might arise from more complex changes in the 

distribution’s shape that signal the involvement of different underlying processes (Ratcliff 

& Murdock, 1976; Heathcote, Popiel & Mewhort, 1991). The present research estimated 

the RT distributions for the same high frequency (HF) and low frequency (LF) words in 

five different word identification tasks that required binary classification or naming 

responses. Changes in distribution shape across different tasks provide the basis for a 

more refined evaluation of the processes involved in visual word recognition than is 

possible from measures of average RT alone. The research focuses particularly on the 

effects of word frequency on the RT distributions obtained in different word identification 

tasks. 

Frequency effects on lexical access 

Almost all tasks requiring word identification yield faster and more accurate 

performance for HF than LF words. This “word frequency effect” (WFE) is so ubiquitous 

that it has determined the lexical retrieval assumptions of all models of lexical access. 

Serial models attribute it to the ordering of the comparison process (e.g., Becker & 

Killion, 1977; Forster, 1976) while parallel activation frameworks assume that the 

representations of HF and LF words have different thresholds (Morton, 1970) or resting 

activation levels (McClelland and Rumelhart, 1981). Similarly, parallel distributed 

processing (PDP) models (Seidenberg & McClelland, 1989; Plaut, McClelland, 
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Seidenberg & Patterson, 1996) assume that connection weights are stronger for more 

frequently experienced patterns.  

This common assumption of a frequency-sensitive lexical retrieval process defines a 

“conventional” view of the lexical “processing architecture” (Monsell, Doyle & Haggard, 

1989, p.45), which assumes that a common set of processes underlie performance on a 

variety of word identification tasks, and that these common processes usually precede 

task-specific processes. This view has been caricatured as the “magic moment” approach 

to lexical access (Balota, 1990) because models often imply that there is a discrete point 

in time when a lexical representation is “accessed”. 

Consistent with this shared assumption, word frequency is the most robust predictor 

of both lexical decision (e.g., Whaley, 1981) and naming (e.g., Treiman, Mullennix, 

Bijeljac-Babic & Richmond-Welty, 1995) performance. However, the WFE has 

consistently been found to be larger in the lexical decision task (LDT) than in naming 

tasks (e.g., Andrews, 1982; Forster & Chambers, 1973).  This implies either that the two 

tasks do not rely on the same access process, or that frequency effects are due, at least in 

part, to task-specific processes. There are two alternative interpretations of the differential 

frequency effects that yield opposite conclusions as to which task provides the more valid 

index of lexical access. 

Naming tasks. Balota and Chumbley (1985) argued that the WFE observed in 

naming tasks has little to do with lexical access on the basis of data from “delayed 

naming tasks”, in which production of a target word is withheld until a cue appears. With 

long enough cue delays, lexical access should be completed before pronunciation begins 

and any residual WFE must reflect production processes (Forster & Chambers, 1973). 

Because they found equivalent WFEs in immediate and delayed naming tasks, Balota and 

Chumbley (1985) concluded that “a large component of the frequency effect in the 

pronunciation task involves production rather than simple lexical access” ( p. 95).  

This conclusion severely challenges the utility of the word naming task as an index 

of lexical access so Balota and Chumbley’s (1985) results were subject to considerable 

scrutiny. Some investigations have replicated their findings of frequency effects on 

delayed naming performance (e.g., Balota & Shields, 1988; Connine, Mullenix, Shernoff 
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& Yelen, 1990), while others have not (e.g,  McRae, Jared & Seidenberg, 1990; Monsell 

et al., 1989; Savage, Bradley & Forster, 1990). Although the reason for these 

contradictory results remains unclear, the accumulated evidence clearly demonstrates that 

a WFE can be observed in delayed naming tasks even under conditions that provide 

sufficient time and “incentive to prepare fully for articulation” (Monsell et al., 1989, p. 

50) and for stimuli that are very carefully matched on phonological characteristics 

(Balota & Shields, 1988; Goldinger, Azuma, Abramson & Jaim, 1997; but see McRae et 

al., 1990). However, the delayed naming WFE is considerably smaller than that observed 

in standard speeded naming conditions implying that speeded naming performance does 

show a reliable WFE that is not due to production. The question still remains as to why 

this effect is so much smaller than that obtained in the LDT given that both tasks are 

assumed to engage the same lexical access mechanism.  

Dual route models of word naming claim that naming tasks underestimate the WFE 

due to lexical access because of the influence of nonlexical naming procedures 

(Coltheart, 1980). In Coltheart et al.’s (1993) computationally implemented Dual Route 

Cascade (DRC) model, a phonological output buffer receives parallel input from the 

lexical representations activated by the stimulus and a frequency-insensitive rule 

algorithm that assigns the phoneme most frequently associated with each grapheme. The 

rule-based procedure is wrong for exception words such as pint or sword, but generates 

the correct pronunciation of regular words. The lexical retrieval procedure generates 

correct pronunciations of all words but is slower for LF than HF words. When the rule 

algorithm assigns phonemes before lexical access is complete, word frequency will not 

influence performance. Thus, the reduced WFE in the naming task arises because LF 

regular words can sometimes be pronounced without completion of the lexical access 

process that is necessary for a LDT response. Consistent with this interpretation, under 

conditions that preclude reliance on nonlexical pronunciation assembly, naming tasks 

yield WFEs equivalent to the LDT (Paap, McDonald, Schvaneveldt & Noel;1987; 

Monsell et al., 1989; but see Balota & Chumbley, 1990).  

Non-lexical influences on pronunciation can also be accommodated by “single-

route” frameworks, such as the interactive activation (IA) and PDP models, which do not 
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assume separate lexical and nonlexical representational systems. Such models assume 

that the associations between the orthographic and phonological units corresponding to 

different representational levels (e.g., letters, graphemes, syllables) are determined by the 

co-occurrence frequency for that unit size (Taft, 1992). Orthographic-phonological 

associations between lexical units will, therefore, depend on word frequency while those 

between sub-lexical units will depend on the correspondence frequency of, say, 

graphemes and phonemes. It is therefore possible to attribute differential frequency 

effects in naming and LDT tasks to the greater impact of sublexical relationships on 

pronunciation responses as long as “lexical and sublexical levels have somewhat different 

time courses” (Monsell et al., 1989, p. 66).  

LDT tasks.  It might be the LDT rather than the naming task that provides an 

inaccurate estimate of the role of frequency in lexical access due to contamination from 

task-specific decision processes. Balota and Chumbley (1984) compared the size of the 

WFE obtained in the LDT with that in a “semantic categorization” task in which 

participants judged whether or not a target word was a member of a previously presented 

semantic category. They found virtually no effect of word frequency on either “yes” or 

“no” responses in the semantic categorization task, even though the same items yielded 

substantial frequency effects in the LDT. The absence of frequency effects on “yes” 

responses task might be due to priming of the target item by the category label, but 

Balota and Chumbley argued that the lack of a frequency effect on “no” responses “is 

considerably more difficult to dismiss” (1984, p. 341). Balota and Chumbley concluded 

that the frequency effects observed in the LDT are due to task-specific processes and may 

be irrelevant to the processes underlying normal word identification.  

Using Atkinson and Juola’s (1974) general two-stage framework for memory 

retrieval, Balota and Chumbly (1984) elaborated a model in which LDT responses are 

based on the “familiarity/meaningfulness (FM)” of the target stimulus. Items with 

extreme FM values (e.g., high frequency words or unwordlike nonwords) yield fast 

classifications while items with more intermediate values require a second stage of 

analysis which is assumed to be more attention-demanding and analytic - and therefore 

slower - than the processes underlying fast first-stage responses: “For example, the 
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subject may actually need to check the spelling of the letter string against the spelling of 

the word contained in the subject’s lexicon” (Balota & Chumbley, 1984, p. 35 The WFE 

occurs because LF words have lower FM values than HF words and are therefore more 

likely to require the slow second-stage analysis. 

Balota and Chumbley’s claim that frequency does not affect semantic categorization 

performance remains contentious. Although semantic judgment tasks have been reported 

to yield smaller WFEs than the LDT (e.g., Forster, 1985; Monsell, 1985), both Monsell et 

al. (1989) and Forster and Shen (1996) did find WFEs of similar magnitude to those 

typically found in the LDT in a task requiring binary semantic judgments. Thus, although 

the precise conditions required to yield a WFE in the semantic categorization task remain 

unclear, the effect is sometimes as large as the LDT. 

Despite these empirical ambiguities, Balota and Chumbley’s (1984) emphasis on the 

role of familiarity and decision processes in the LDT has been influential. Notably, a 

familiarity mechanism that allows fast non-lexically based decisions in the LDT has 

recently been incorporated into computational implementations of the two major classes 

of model of visual word identification: Grainger and Jacobs’ (1996) extension of the IA 

framework  - the Multiple Read Out Model (MROM); and the most recent version of the 

DRC model (Coltheart, Rastle, Perry, Langdon & Ziegler, in press). Both models 

compute a measure of the summed lexical activity elicited by a stimulus early in 

processing. If this measure exceeds a threshold, a fast “word” classification can be made 

even if no word node has yet exceeded threshold. With respect to the WFE, this account 

is similar in spirit to the first stage of Balota and Chumbley’s decision mechanism 

because it assumes that LDT responses can sometimes be made on the basis of overall 

stimulus familiarity without unique item identification. HF words have higher resting 

activation levels and will on average, therefore, generate higher levels of summed lexical 

activity early in processing than LF words. Consequently, HF words may be classified as 

words on the basis of summed lexical activity before the individual word node exceeds 

threshold. LF words with many lexical neighbors may also lead to sufficiently high levels 

of overall activity to exceed the “word” response threshold (Andrews, 1997), but LDT 

responses to most LF words require unique identification1.  
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There is an important conceptual difference between Balota and Chumbley’s (1984) 

proposal and the familiarity mechanism implemented in MROM and DRC. Balota and 

Chumbley’s (1984) model assumes that familiarity effects on decision processes in the 

LDT are independent of lexical retrieval. Monsell et al. (1989) pointed out that accepting 

that LDT frequency effects are magnified by decision processes does not entail rejecting 

the view that they arise from the frequency-sensitivity of lexical retrieval processes. A 

familiarity estimate could be derived by “continuous global monitoring of levels or rates 

of change of activation during [lexical] identification” (Monsell et al., 1989, p. 67). By 

this view, rather than providing evidence against the contribution of word frequency to 

lexical identification,  “the frequency sensitivity of the decision process is…one 

reflection …of the frequency sensitivity of identification” (Monsell et al., 1989, p. 67). 

The familiarity mechanisms implemented in MROM and DRC is of the form suggested 

by Monsell et al. (1989) in that it relies on lexical activity rather than an independent 

familiarity mechanism. Nevertheless, as in Balota and Chumbley’s (1984) model, use of 

the familiarity metric is assumed to be specific to the LDT.  

Beyond measures of central tendency 

The evidence reviewed so far has relied on mean RT to index the effects of 

psycholinguistic variables on task performance. Interpretations based on mean RT data 

often imply that differences between conditions reflect shifts along the response time 

scale rather than changes in the shape of the RT distribution. But such assumptions may 

be unjustified (see Balota & Spieler, 1999, Figure 1). An increase in the proportion of 

slow RTs (reflected in a more positively skewed distribution) will lead to an increase in 

mean RT without an overall shift in the mode of the distribution. Conversely, mean RT 

may stay constant despite major changes in the distribution of RTs. For example, the 

typical finding of weak or null facilitation effects for congruent stimuli in the Stroop 

color naming task occurs because a decrease in modal RT compared to a neutral 

condition is accompanied by an increase in the skew of the RT distribution (Heathcote et 

al., 1991; Spieler Balota & Faust, 1996). 

  Part of the reason that researchers have continued to rely on measures of central 

tendency is that traditional methods for estimating distribution shape are neither efficient 
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nor robust (Ratcliff, 1979)2. Estimates of higher cumulants obtained from the usual 

sample formulae are extremely sensitive to outliers and provide very variable estimates, 

so that many thousands of observations are required to achieve sufficient precision. 

Ratcliff and Murdock (1976) suggested an alternative approach, which assumes a 

particular underlying probability distribution and then uses a maximum likelihood 

criterion to estimate values of the distribution’s parameters that best fit the data.  Unlike 

sample cumulant estimates, maximum likelihood estimates are sufficiently precise with 

moderately sized samples (Cox & Hinckley, 1974). However, as well as requiring 

computationally intensive optimization procedures, the major drawback of this method is 

that it requires selection of a particular theoretical probability distribution. A number of 

different functions for RT distributions have been proposed (e.g., Luce, 1986), but most 

recent investigations have used the ex-Gaussian distribution, which Ratcliff (1979) and 

others (e.g., Heathcote et al., 1991; Hockley, 1984; Mewhort et al., 1992) have 

demonstrated to yield a good fit with empirical data from a range of choice RT 

paradigms.   

The ex-Gaussian distribution (Hohle, 1965; Burbeck &Luce, 1982), results from the 

sum of independent Gaussian (Normal) and Exponential random variables. It has three 

parameters: Mu (µ), Sigma (σ) and Tau (τ), where µ and σ are the mean and standard 

deviation of the Normal component and τ is the mean (and standard deviation) of the 

Exponential component. These parameters have a simple relationship with the first three 

cumulants of the overall distribution: the mean of the ex-Gaussian equals the sum of µ 

and τ; its variance is the sum of σ2 and τ2; and the third cumulant equals 2τ3. Thus, the 

mean and variance of the overall distribution are a function of the location and spread of 

both the normal and the exponential components, while the exponential component alone 

gives rise to the asymmetry of the ex-Gaussian distribution (i.e., when τ=0, the 

distribution is normal and skew increases with τ). Estimates of µ and τ therefore provide 

a concise summary of the location and skew of the overall distribution.  

A second approach to measuring RT distribution shape involves estimating the 

distribution function locally. Again, Ratcliff (1979) has been influential in this approach 

with his adaptation of Vincent’s (1912) technique (for related approaches see Silverman, 
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1986). For each subject, distribution shape is estimated by the mean RT in each of a 

series of equally probable ranges of the ordered sample of RTs. Each mean is called a 

vincentile. For example, 10 vincentiles can be obtained by averaging the first 10%, 

second 10% and so on of the ordered RT data. Vincentiles can be estimated using a 

simple algorithm given by Ratcliff (1979)3. Ratcliff (1979) argued that RT distributions 

should be estimated from vincentiles averaged over subjects when there are insufficient 

data points (less than 100 per subject) to support reliable maximum likelihood estimation 

for individual subjects. Average vincentiles approximately preserve the shape of 

underlying distributions for each subject, as long as the individual subject distributions 

are uni-modal and smooth (e.g., if each subject’s RT distribution is ex-Gaussian, the 

distribution of their vincentile averages will be approximately ex-Gaussian). The 

parameters of an ex-Gaussian distribution fit to a vincentile average are also interpretable 

as the average of the corresponding parameters for each subject4. Vincent averages, 

therefore, provide a way of avoiding excessive variability in individual RT distribution 

shape estimates when experimental constraints, such as the number of words of a certain 

type, limit sample size. Plots of average vincentiles also provide a method of 

investigating mechanisms that influence particular local regions of the RT distribution. 

For example, a process that decreases mean RT by reducing the proportion of long RTs 

will influence the slower vincentiles but leave the faster ones relatively unaffected. We 

will use both average vincentile plots and ex-Gaussian parameters estimated from 

average vincentiles to provide converging evidence about RT distribution shape in 

different word identification tasks.  

RT distributions and word identification  

Two recent studies have applied RT distribution analysis to test more refined 

predictions about the processes underlying word identification than can be evaluated 

using the traditional measures of central tendency. Plourde and Besner (1997) used the 

LDT to investigate WFE and stimulus quality effects on RT mean and variance as well as 

on ex-Gaussian estimates of µ, σ and τ. They found that both µ and τ were larger for LF 

than HF words. Degraded compared to clearly presented items were also associated with 

higher µ and τ although the stimulus quality effect on τ was confined to participants with 
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a high error rate. Consistent with many investigations of the joint influence of these 

variables on mean RT (e.g., Becker & Killion, 1977; Borowsky & Besner, 1993), their 

effects on variance and the ex-Gaussian parameter estimates were additive rather than 

interactive. Using Sternberg’s (1969) additive factors logic, Plourde and Besner argued 

that the lack of interactions between frequency and quality on any component of the RT 

distribution indicates that word frequency and stimulus quality influence separate 

processes5 and strengthens the evidence that “the locus of the word frequency effect in 

lexical decision should not be thought of as affecting the word detector level” (p. 189). 

However, their data do not clearly distinguish between alternative accounts of the basis of 

the WFE because they rely entirely on the LDT paradigm. If additive logic is accepted, 

their results suggest that frequency affects a processing stage that is insensitive to 

stimulus degradation, but a number of models of word identification can accommodate 

the additivity of frequency and stimulus quality effects without abandoning the 

assumption that WFE reflects lexical access (e.g., Becker, 1976; Besner & Johnson, 1987, 

Paap et al., 1982).  

Balota and Spieler (1999) recently applied RT distribution analysis to test predictions 

derived from Balota and Chumbley’s (1984) model of the LDT. The greater proportion of 

slow responses based on the additional second-stage required for LF words should result 

in a more skewed RT distribution, and therefore larger τ estimates, for LF than HF words. 

These τ effects should be specific to the LDT because they reflect decision processes 

specific to the binary classification requirements of this task.  Balota and Spieler also 

compared the RT distributions for repeated and non-repeated words and nonwords. If 

repetition increases an item’s FM value, it should increase the chance that a LF word will 

fall above the upper response criterion and allow a fast “yes” response, but decrease the 

probability of a fast “no” response to nonword stimuli. These effects should be reflected 

in reduced τ for repeated compared to non-repeated LF words, but decreased τ for 

repeated nonwords.  

Balota and Spieler’s results broadly supported these predictions. Consistent with 

Plourde and Besner’s (1997) data, the 63 ms WFE on mean RT in the LDT was due to 

relatively equivalent changes in both µ (29 ms) and τ (35 ms), indicating that the 
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distributions for LF words were both shifted in location and more skewed than those for 

HF words. The WFE on mean RT for the same items in a word naming task was 

considerably smaller (18 ms) and the ex-Gaussian analysis showed that it was due 

entirely to changes in µ with no evidence of the τ effect observed in the LDT.  The 

apparent specificity of the τ effect to the LDT is compatible with the predictions of the 

Balota and Chumbley (1984) model. The LDT repetition effects showed the typically 

greater repetition effect on mean RT for LF than HF words (e.g., Scarborough, Cortese & 

Scarborough, 1977). The ex-Gaussian parameters revealed that the repetition effect for 

HF words reflected a change in µ alone, while for LF words it was due to a reduction in 

both µ and τ. By contrast, nonword repetition was associated with an increase in both µ 

and τ. The repetition effect on naming was weaker than in the LDT, and repetition effects 

were additive with both frequency and lexicality. The task differences are again 

compatible with the claim that the larger frequency and repetition effects observed in the 

LDT data reflect task-specific processes.  

Although the broad features of these results are compatible with Balota and 

Chumbley’s (1984) conceptual description of the decision process underlying the LDT, 

Balota and Spieler (1999) were unable to explicitly simulate the empirical RT 

distributions obtained in the LDT using the original two-stage account.  A number of 

models assuming different distributions of first and second-stage response times were 

compared but none could reproduce the complete pattern of effects of frequency and 

repetition on µ and τ. Balota and Spieler argued that their results showed a “dissociation 

of effects of variables on Mu and Tau [which] suggests that different processes may be 

influencing different parameters in the RT distributions” (1999, p. 43). They therefore 

implemented a model that assumes different effects of both frequency and repetition on 

first and second stage responses. The parameters that allowed the most effective 

simulation assumed additive effects of frequency and repetition on first stage responses, 

but interactive effects on the second stage. Balota and Spieler identify this modified 

model with the view that frequency and repetition influence two different processes, one 

that is fast and automatic and yields additive effects of frequency and repetition, and one 

that is slower, more attentionally demanding and shows larger repetition effects for LF 
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words. This distinction is consistent with the differential WFE obtained in masked and 

unmasked priming paradigms (Forster and Davis, 1984; Rajaram & Neely, 1992) and the 

advantage for LF words in recognition memory tasks (Glanzer & Bowles, 1976). 

However, Balota and Spieler acknowledge that other accounts might be able to explain 

the results as well as their “hybrid two-stage model”.  

Rationale for the present study 

 The finding of a WFE on skew that appears specific to the LDT is consistent with 

Balota and Spieler’s broad claim that different factors contribute to the WFE in LDT and 

naming tasks. But it does not provide clear support for a frequency-sensitive decision 

process that is unique to the LDT, because the data do not definitively establish whether 

the differential WFEs in LDT and naming tasks are due to decision processes that 

exaggerate the WFE in the LDT, or to sublexical processes that reduce the WFE in word 

naming tasks (Paap et al., 1987), or to some combination of the two. Distinguishing these 

alternatives requires a broader array of tasks than those compared by Balota and Spieler 

(1999). In addition to LDT and word naming tasks, the present experiment included two 

additional tasks selected to shed light on the locus of frequency effects on RT 

distribution.  

The Animacy Semantic Categorization (SEMCAT) task required participants to 

classify HF and LF words as animate or inanimate. Although it is clear that some 

semantic categorization tasks can be strategically influenced, they are often regarded as 

the hallmark of lexical retrieval (Forster & Shen, 1996). The relevance of this task in the 

present context is that it does not allow responses to be based solely on item familiarity. 

If LDT frequency effects are partly due to familiarity based decision processes, they 

should be larger than those obtained in the SEMCAT task primarily because of a larger τ 

component. If both tasks involve a common frequency-sensitive process, they should 

show similar effects of frequency across the RT distributions for different conditions. 

In the Lexically Contingent Naming (LEXNAM) task (often called Go No-go 

naming) participants were presented with both words and nonwords and told to read the 

item aloud only if it is a word. This task provides an estimate of lexically-based naming 

performance (Forster & Davis, 1991): participants must determine that the item is a word 
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before pronouncing it and the task therefore combines the demands of the LDT and 

naming tasks (Hino & Lupker, 1996, 1998). However, the crucial difference between the 

LEXNAM task and the LDT is that contingent naming requires a unique word-specific 

response so, in contrast to the LDT, responses cannot be based on familiarity alone. 

Contingent naming results also provide evidence about the contribution of sublexical 

processes to performance in the standard naming task. If the smaller WFE observed in 

naming tasks reflects the impact of nonlexical assembly processes on pronunciation of LF 

words, the LEXNAM task should produce a WFE equivalent to the LDT because 

contingent naming responses cannot be based solely on nonlexical assembly. Thus, the 

contingent naming task provides valuable information about the basis of the WFE in both 

LDT and naming tasks because it precludes both the fast familiarity-based responses 

presumed to be available for HF words in the LDT, and the nonlexical pronunciation 

responses that can sometimes be made to LF regular words before lexical retrieval has 

completed. If both sets of task-specific processes play a role, then the WFE in the 

LEXNAM task will be larger than in either LDT or standard naming. This general 

prediction has been confirmed in contingent naming data for both English and Japanese 

words (Hino & Lupker, 1996, 1998). Comparisons of frequency effects on RT 

distributions in LEXNAM with those for the standard LDT and word naming tasks will 

provide more refined evidence about the relationship between the processes involved in 

each task. 

EXPERIMENT 1 

The same set of items was presented to a large sample of subjects in five different 

tasks, three of which required a naming response and two a binary classification. The 

three different naming tasks all required the same pronunciation response, but were 

designed to vary the extent to which lexical retrieval was a prerequisite for pronunciation. 

In the Word Naming (WNAM) task, participants were presented with only word items 

and told to read them aloud as quickly as possible. The Word and Nonword Naming task 

(W/NWNAM) was identical except that words were mixed with nonwords and 

participants were told to read aloud all items. Because nonwords must, in theory, be 

named nonlexically (e.g., Monsell, Patterson, Graham, Hughes & Milroy, 1992), these 
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two variants of the standard naming tasks have been argued to provide a means of 

demonstrating the involvement of nonlexical naming procedures which are assumed to 

play a greater role when words are named in an environment of nonwords (but see 

Lupker, Brown & Colombo, 1997). The W/NWNAM task also serves as a control for the 

Lexically Contingent Naming (LEXNAM) task because the two tasks presented identical 

word and nonword stimuli but in LEXNAM participants were instructed to only read the 

item aloud if it was a word. The LEXNAM task therefore requires participants to 

establish that the item is a word before emitting a pronunciation response and cannot, 

therefore, rely entirely on nonlexical assembly.   

Both the LDT and the SEMCAT task required a binary classification response. In the 

LDT this classification must be based on the lexicality of the stimulus. The categorization 

task required a binary animate/inanimate classification because it placed fewer 

restrictions on the stimuli that could be included and because it is less vulnerable to the 

category priming effects that are argued to contaminate Balota and Chumbley’s (1984) 

version of the paradigm (Monsell et al., 1989).  Both tasks seem to require lexical 

retrieval but only the LDT allows familiarity-based responses because familiarity does 

not provide a basis for the animacy judgments required in the SEMCAT task.  

The SEMCAT task required selection of stimuli that could unambiguously be 

classified as animate or inanimate. Animacy was therefore included as an independent 

variable to allow its effects on RT distributions to be compared with the effects of 

frequency. Monsell et al.’s (1989) semantic categorization task, which required a similar 

classification of items as “person” or “thing”, found that responses to “person” (i.e., 

animate) words were faster than those to “thing” (inanimate) words and that the latter 

also showed a smaller frequency effect.  They could only attribute these differences to 

possible problems in item selection, but argued that the “form of the [frequency] effect” 

(p. 55) and its interaction with animacy in the categorization task were sufficiently 

similar to that in the LDT to support their claim that there is a “common basis for the 

effect of frequency on RT in the two tasks” (p. 56). The present research explores 

differences in the effects of both frequency and animacy on different tasks in more detail 

to provide further evidence regarding this claim. If the faster responses to animate words 
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are taken to reflect reliance on “semantic dimensions or features” such as “personhood” 

or “animacy” (Monsell et al., 1989), then animacy effects provide an index of the 

retrieval of semantic information which can be used to evaluate the relative contribution 

of such information to faster and slower responses in different tasks. For example, if 

semantic information is activated more slowly than the orthographic and phonological 

information stored in the lexical system, animacy effects on tasks that do not require 

retrieval of such information – all but the SEMCAT task in the present battery - should be 

more marked for slower responses. 

Method 

Participants. The participants were 91 students (31 male) from the University of 

New South Wales, with normal or corrected to normal vision who completed the 

experiment for course credit. The data for 16 subjects were eliminated because they had 

learned English only after starting primary school or because they made more than 15% 

errors in two or more of the five tasks. Two further subjects’ data were eliminated from 

some tasks because of equipment malfunctions. The final data set consisted of 74 sets of 

data for all five tasks, except the LEXNAM task, which had 75 subjects.  

Stimuli. The word stimuli were selected to conform to a factorial manipulation of 

word frequency (High/Low) and animacy (Animate/Inanimate). HF words occurred at 

least 50 times/million in Kucera and Francis’s (1967) norms and LF words had 

frequencies of no more than 20/million. A set of 125 items was selected to fill each of the 

four cells of the factorial design. The complete set of 500 words was then divided into 

five lists each containing 25 words in each frequency/animacy combination. An attempt 

was made to match the words in each list on number of letters, number of syllables, and 

word frequency. The length range across the item set was from 3 to 10 letters (1 to 4 

syllables). It turned out to be impossible to equate the letter length of the HF and LF 

words while maintaining equivalence on other factors: the mean length for the five lists 

of HF words ranged from 5.6 to 6.0 letters (Mean = 5.82), while those for the LF items 

ranged from 6.2 to 6.8 (Mean = 6.48). Although small, this difference is significant 

(t(498) = 4.62). The average word frequencies of the HF lists were between 167.7 and 

176.8/million and those for the LF lists ranged from 8.5 to 8.9/million. Animacy 
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categorizations were made by one of the authors (S.A.) and confirmed through discussion 

with students and colleagues. Efforts were made to ensure that the two sets of items could 

not be systematically differentiated by the presence or absence of affixes associated with 

animacy. A complete word list is presented in Appendix A.  

Three sets of 60 nonwords were constructed for use in the three tasks requiring 

nonword stimuli (LDT, W/NWNAM and LEXNAM). The nonwords were derived from a 

computer-generated list constructed to match the letter and bigram distribution of English 

words. Nonwords were orthographically and phonologically legal and selected to match 

the letter and syllabic length distribution of the word lists and to contain affixes similar to 

those represented in the word items (e.g., troan, ocarice, follour, manton, shestin, 

nimicater).  The same set of nonwords was attached to each of the five word lists to be 

used for a particular task, but different nonword sets were used for different tasks. Thus, 

as was the case for words, participants did not experience repetitions of any nonwords 

across the five task conditions. In all tasks that included nonword items, the ratio of 

words to nonwords was 5:3. Each participant was presented with a different stimulus lists 

in each of the five tasks. Across participants, each list was assigned a roughly equivalent 

number of times to each task so that RT data were obtained for all 500 words in all five 

tasks. 

Procedure. Participants were tested individually in sound-attenuated cubicles.  To 

avoid response confusion, participants always completed the three naming tasks and the 

two binary classification tasks in sequence, with the two button-press tasks either 

preceded or followed by the three naming tasks. The order of SEMCAT and LDT was 

counterbalanced within the two button-press tasks, and six different orders of the three 

naming tasks were approximately equally represented.  Prior to each task condition, 

participants were presented with 15 practice trials to accustom them to the new task 

requirements and two buffer items preceded each list of experimental items. In all tasks, 

subjects were instructed to make their response as quickly as possible while avoiding too 

high an error rate.  

The DMASTR6 software package was used to control stimulus presentation, collect 

RTs, and measures of classification accuracy. For the naming tasks, the experimenter 
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monitored participants’ performance and recorded pronunciation errors and trials on 

which the voice key failed to trigger or was triggered by extraneous noise, so that these 

trials could be removed from the RT analysis. Stimulus presentation procedures were 

identical in all tasks. Items were presented in lower case in the center of a computer 

screen. Each item remained on the screen for 1200 ms and responses were collected for 3 

seconds from stimulus onset. The next trial was initiated 3 seconds after the offset of the 

previous item. Fixed, rather than self-paced presentation and a relatively slow 

presentation rate were employed to allow identical presentation procedures in all tasks 

and to ensure that participants did not feel differentially time pressured in the more 

difficult task conditions.  

Results and Discussion 

All analyses were restricted to the data obtained with word stimuli because exactly 

the same words were used in all tasks. Nonword performance was not analyzed both 

because nonword responses were only obtained in two tasks (the LDT and W/NWNAM) 

and because different nonword sets were used in each task in which they were included. 

The RT analyses yielded five different measures: mean and variance, and the ex-

Gaussian parameters µ, σ, and τ. Means and variances were calculated directly from the 

data using the usual sample formulae. Ex-Gaussian parameter estimates were obtained 

from vincentile values averaged over subjects using maximum likelihood estimation 

procedures implemented with the RTSYS software (Heathcote, 1996).  

We also examined accuracy in all tasks and conditions. There were three possible 

types of errors across the five tasks.  In the tasks requiring a naming response, problems 

with the voice key (e.g., triggering by external sounds, responses too soft to be detected) 

caused 1.9% of trials to be discarded before analysis. The remaining two types of errors 

were misses (failing to respond within the time limit) and wrong responses. Misses were 

very rare in the W/NWNAM and WNAM tasks (0.08% and 0.15%) and so were not 

analyzed. A wrong response could either be due to a mispronunciation (naming tasks) or 

to pressing the wrong response button (LDT and SEMCAT).   

Unless otherwise indicated, all results described as significant refer to a null 

hypothesis sampling distribution probability of less than .05. 
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Correlational analyses. Correlational analyses have provided a major source of 

evidence about the overlap between the processes involved in different tasks (e.g., Forster 

& Chambers, 1973). They also allow evaluation of the effects of attributes that were not 

explicitly controlled during item selection. Table 1 presents the correlations between 

mean RT to each item in the five different tasks and measures of word length (in letters), 

word frequency (WORDFREQ; Kucera & Francis, 1967) and its logarithm (LOGFREQ).  

INSERT TABLE 1 ABOUT HERE 

The correlations between mean item RT in the different tasks range from .3 to .7. 

The weakest relationship is between W/NWNAM and SEMCAT and the strongest 

between WNAM and LEXNAM.  LEXNAM has the highest correlation with every other 

task except W/NWNAM implying that the processes underlying performance in the 

LEXNAM task have the greatest overlap with those required in all other tasks. The 

relationship to performance in both the LDT and the standard naming tasks is not 

surprising because, logically, the task combines the demands of lexical classification and 

word naming but the strong relationship between LEXNAM and SEMCAT performance 

is less intuitively obvious. The correlations between length and task performance confirm 

that length has a greater impact on naming performance than on binary classification 

tasks. Moreover, the fact that this correlation is lower for the LEXNAM task, which was 

intended to preclude nonlexical naming strategies, is consistent with Weekes’ (1997) 

claim that length effects on naming performance are due, at least in part, to nonlexical 

procedures. Performance in all tasks is more highly correlated with log frequency than 

with a raw measure of number of occurrences per million, consistent with previous 

evidence that RT has a stronger linear relationship with log than absolute word frequency 

(e.g., Whaley, 1978).  

INSERT TABLE 2 ABOUT HERE 

To determine the unique contribution of the various stimulus attributes and to 

investigate whether the items differed in factors relevant to phonological production, 

simultaneous regression analyses were conducted on each task (see Table 2) using the 

predictors of log frequency and length as well as a set of 10 binary variables coding 

phonetic characteristics of the initial phoneme of each word and a rated measure of 
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regularity7. The phonetic variables were those employed in Treiman et al.’s (1995) and 

Balota and Spieler’s (1997) analyses of large-scale naming datasets. The regression 

analyses demonstrated significant unique contributions of length to standard naming but 

not the LEXNAM or button-press tasks. The cluster of phonological variables predicted 

substantial proportions of variance in all three tasks requiring a pronunciation response 

but had no effect on button-press performance. Log frequency was a significant predictor 

of performance in all tasks. In the LDT it was the only significant predictor and 

accounted for almost all systematic variance. The pronunciation response tasks were also 

sensitive to response-specific factors that accounted, in the case of the standard naming 

tasks for more total variance that log frequency8. Frequency still accounted for a 

substantial portion of the systematic variance in naming times, but considerably less than 

for the other three tasks. Both the lower unique contribution of frequency to the two 

naming tasks, and the fact that the LDT shows the largest unique contribution of 

frequency are consistent with the Balota and Chumbley (1984) account.  

Overview of Parameter Estimates. In each task, we used the maximum number of 

vincentiles possible given the size of the sample of correct responses. This was generally 

about half of the number of trials within a condition (25). Table 3 presents RT mean and 

variance estimates, ex-Gaussian parameter estimates, and percent misses and wrong 

responses for each condition of each task. The data points and standard error bars in 

Figure 1 are the RT for each vincentiles averaged over subjects in each condition of the 

five tasks.  The lines in each graph join the estimated vincentiles for the fitted ex-

Gaussian distributions9.  

INSERT TABLE 3 ABOUT HERE 

For the standard naming tasks (W/NWNAM and WNAM) the ex-Gaussian 

distribution provides a very accurate description: ex-Gaussian vincentiles differed from 

averaged vincentiles by much less than one standard error in all cases. For the remaining 

tasks the ex-Gaussian also provides a very good fit for all but the slowest vincentile. The 

misfit for the LDT and the LEXNAM task mainly occurred for LF words, with the fitted 

ex-Gaussian distribution overestimating the subject average value. Overestimation of the 
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slowest vincentile by the ex-Gaussian distribution is greatest in the SEMCAT task, being 

in excess of one standard error for all conditions10.  

INSERT FIGURE 1 ABOUT HERE 

The misfit of the slowest vincentile in the SEMCAT task might be caused by missed 

responses due to the time limit on responding. The time limit can remove genuine slow 

responses to difficult words and has its greatest effect in SEMCAT because it is the 

slowest task overall, especially for LF words. Miss rates are also quite high for LF words 

in the LEXNAM task, but many of these misses are likely to be genuine error responses, 

that is, items for which subjects deliberately withheld a response because they thought 

that the item was not a word. To check the possibility that misfit was caused by missed 

responses in SEMCAT, we fit the ex-Gaussian distribution to vincentiles averaged over 

subjects who had fewer than 3% misses (n = 55)11.  As shown in Figure 1f, the fit of the 

ex-Gaussian was improved and is similar to the fit for LEXNAM and LDT. Analyses of 

the ex-Gaussian parameters for the fits to low miss subjects in the SEMCAT task 

produced the same pattern of significance as analyses of parameters from fits to all 

subjects. Because the pattern did not differ, and in order to maintain comparability 

between subject samples for each task, subsequent data and analysis are based on 

averages over all subjects in the SEMCAT task.  

To confirm and extend analyses of the ex-Gaussian, we analyzed individual subject 

vincentile values. These analyses used 10% vincentiles for all tasks so that the fastest and 

slowest vincentiles could be compared across tasks.  In all inferential tests, task was 

treated as a between-subjects factor whereas frequency and animacy were treated as 

within subjects-factors12. Inferential tests of the ex-Gaussian parameters were constructed 

by resampling (Efron & Tibshirani, 1996) using a modified version of the RTSYS 

software13.  

Inter-relationships between measures. The overall results and relationships 

between the various measures are first presented descriptively to provide an overview of 

the results for each task and to demonstrate that the different measures, while often 

correlated, yield unique information. Figure 2 plots RT variance against mean RT (Panel 

A), τ against µ (Panel B), and total error rate against mean RT (misses + wrong 
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responses) (Panel C).  Within each task, a line joins HF and LF conditions of the same 

type (solid lines for animate words and dotted lines for inanimate words). Hence, the 

length of each line indicates the combined magnitude of the WFE across both measures, 

while the distance between the lower (HF) and upper  (LF) end of each line, on either 

axis, indicates the magnitude of the WFE on that specific dependent variable. Within 

each task, the WFE across measures is strongly positively correlated, except for errors in 

SEMCAT. For all but inanimate words in SEMCAT, the WFE is large and positive (i.e., 

all measures are higher for LF than HF items).  Animacy effects, which can be seen in 

Figure 2 by joining the corresponding ends of the solid and dotted lines for each task, are 

weaker than frequency effects in all tasks except SEMCAT.  The direction of all animacy 

effects is positive (i. e., inanimate larger than animate), except for errors to LF words in 

SEMCAT. SEMCAT also differs from the other tasks in the relationship between mean 

RT, variability and skew. RT standard deviation and τ increase at about half the rate of 

mean RT for all tasks except SEMCAT, where the rate was about one third to one 

quarter.  Perhaps the most surprising feature of the summary data is that the overall 

central tendency (mean RT and µ) of the RT distributions is faster for LDT than naming. 

Explanations of this discrepancy with the usual finding that LDT responses are slower 

than naming latencies (e.g., Forster & Chambers, 1973) are considered in the General 

Discussion. 

INSERT FIGURE 2 HERE 

Comparisons between tasks show several unique effects on the different measures. 

Overall for each task, location measures are smallest for the LDT, second for the 

W/NWNAM and WNAM tasks, third for the LEXNAM task, and largest for the 

SEMCAT task. In contrast, variance, error rates14 and τ are smallest for the WNAM and 

W/NWNAM tasks, second - and approximately equivalent - for the LEXNAM and LDT 

tasks, and largest for the SEMCAT task. Thus, variability and skew are not simple 

correlates of mean RT. The inter-relationships between the various measures suggest 

three task clusters. The W/NWNAM and WNAM tasks are almost identical on all 

measures. The measures that summarize the location of the RT distribution - mean RT 

and µ - differentiate LEXNAM and LDT. LDT responses are much faster, but these two 
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tasks are almost identical on all other measures. Performance in the SEMCAT task stands 

alone.  

 The following three sections describe the results of statistical analyses of the various 

dependent measures separately for the three task clusters. The dependent measures differ 

in precision so tests of the same effect will not have the same power for different 

measures. We provide effect magnitudes as well as the results of inferential tests on the 

effects so their sizes can be compared without confounding by differences in power. In 

each analysis, the magnitude of the main effects and interactions were defined such that 

the most common outcome yielded a positive value (i.e., a positive value for the 

frequency and animacy effects indicates slower responses to LF and inanimate words, 

respectively, and a positive interaction indicates that the animacy effect was larger for LF 

words).   

W/NWNAM and WNAM tasks. Table 4 presents the grand means and the 

magnitudes of each main effect (task, frequency and animacy) and their interactions, 

along with the results of inferential testing of the significance of the effects observed in 

each task. Errors consisted only of mispronunciations.  No effect involving the task factor 

was significant indicating that the presence of nonwords had minimal effect on the way 

subjects named words (Keefe & Neely, 1990). The WFE was large and highly significant 

for all measures except σ. These results contrast with Balota and Spieler’s (1999). They 

found that the WFE on mean naming RT was less than half as large and occurred only in 

µ, whereas we observed a highly significant WFE on τ.  The fact that frequency exerted a 

highly significant effect on variance but not on σ demonstrates that the variance effect is 

primarily due to the increased τ for LF words, rather than to an overall increase in 

performance variability. LF words were also much more likely to be mispronounced than 

HF words.  

INSERT TABLE 4 ABOUT HERE 

The main effect of animacy and the interaction of animacy with frequency are quite 

small but highly significant in mean RT. Figure 1 shows that both the main effect and the 

interaction are confined to LF words and slower vincentiles. To further investigate this 

observation, we performed repeated measures ANOVAs on 10% vincentile values 
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calculated for each subject. Figure 3 plots the magnitude of the frequency and animacy 

main effects and of the interaction between frequency and animacy across the ten 

vincentiles for each task. A flat line indicates an effect on only the location (mean and µ) 

of the RT distribution, whereas a change with vincentile number indicates an effect on 

variance or skew. The increase in frequency and animacy effects across vincentiles are 

consistent with the main effects of frequency and animacy on variance, and the main 

effect of frequency on τ in Table 5. Figure 3 also confirms the impression from Figure 1 

that animacy only affects LF words, and that this effect increases for slower responses. 

We also calculated three-way ANOVAs using the first and last vincentile values as 

dependent variables to examine effects on very fast and slow responses. There were no 

differences between the WNAM and W/NWNAM RT distributions. The frequency main 

effect on the first vincentile was highly significant, indicating that frequency influenced 

even the fastest naming responses but neither the animacy effect nor the frequency by 

animacy interaction were significant for the first vincentile, confirming that animacy did 

not affect fast responses for either LF or HF words. For the last vincentile, in contrast, the 

main effects of frequency and animacy, as well as their interaction, all yielded significant 

effects.  

INSERT FIGURE 3 ABOUT HERE 

 

In summary, inferential analyses of the W/NWNAM and WNAM tasks showed that 

none of the measures significantly differentiated the naming tasks, and no effect or 

combination of effects interacted with task on any measure. Frequency had a large effect 

on all measures except σ.  Frequency differences are evident from the first vincentile and 

increase with later vincentiles for both animate and inanimate words.  Animacy does not 

affect HF words in either task. For LF words, animacy does not affect fast responses, but 

it has an increasing effect as responses become slower.  

LDT and LEXNAM tasks.  Table 5 presents the grand means and the magnitudes 

of each main effect (task, frequency and animacy) and their interaction, along with the 

results of inferential testing. Figure 4 plots the frequency and animacy main effects and 

their interaction across the ten vincentiles for each task. Task had a highly significant 
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effect on the location measures, mean RT and µ, but did not approach significance for 

either variance or τ.  Analyses of the first and last vincentiles also showed highly 

significant main effects of task but no interactions with task approached significance, 

except for a three-way interaction between task, frequency and animacy for the first 

vincentile. As can be seen in Figures 1, the interaction occurs because animacy affects 

only LF words in the LEXNAM task, but has a slightly larger effect on high than LF 

words in the LDT. Apart from this difference, the results show that the RT distribution 

for the LEXNAM task is shifted to be approximately 125 ms slower than that for the 

LDT, with virtually no change in distributional shape.  

INSERT FIGURE 4 ABOUT HERE 

The error analysis in Table 5 compared the sum of misses and mispronunciations in 

the LEXNAM task with the sum of misses and wrong responses in the LDT. Average 

error rate was 1.2% higher in the LDT than in the LEXNAM task, but the effect was only 

marginally significant.   Misses were more common in LEXNAM (3.54%) than in the 

LDT (0.15%), and wrong responses in the LDT (5.28%) were more common than 

mispronunciations in the LEXNAM task (0.72%). We compared summed error measures 

because the response rule in the LEXNAM task (i.e., respond only if the item is a word) 

means that misses could be due to either wrong or slow decisions. 

INSERT TABLE 5 HERE 

The WFE was highly significant for all measures except σ. Replicating Balota and 

Spieler (1999) and Plourde and Besner’s (1997) LDT findings, the main effect of 

frequency was greater for τ than µ, and small for σ. In fact, our LDT ex-Gaussian 

estimates are very similar to those in the earlier reports: we found µ, σ and τ frequency 

effects of 36, 6 and 46 msecs, respectively, compared to values of 20, 3, 37  (Balota & 

Spieler, 1999) and 29, 6, 35 msecs (Plourde & Besner, 1997). The animacy main effect 

was smaller but still significant on mean and variance, and also on τ. In both tasks, 

interactions between frequency and animacy reflected a greater animacy effect for LF 

words. 

Figure 4 demonstrates that animacy and frequency effects increased with RT, and 

that the animacy effect tended to increase more for LF than HF words. Separate analyses 
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of the first and last vincentile showed highly significant main effects of frequency and 

animacy on both fast and slow responses, whereas the interaction of frequency and 

animacy was significant only in the last vincentile. 

The SEMCAT task 

The effects of frequency and animacy on SEMCAT performance, and particularly 

their interaction, are in marked contrast to the other tasks.  Table 7 reports effect 

magnitudes and significance test results for the various measures, and Figure 5 plots the 

effects as a function of vincentile number. Frequency had significant effects on all 

measures including σ.  The WFE on mean RT and errors was similar in magnitude to the 

LDT and LEXNAM tasks and larger than that observed in the W/NWNAM and WNAM 

tasks. However, the difference between mean RT for HF and LF words reflected different 

distributional properties from those underlying the lexical discrimination tasks. The WFE 

on µ was larger than in any other task, whereas for τ it was almost identical to the small 

effect found in the W/NWNAM and WNAM tasks. The main effect of animacy on 

location measures, mean RT and µ, was also considerably larger than the other tasks but, 

τ was unaffected by animacy. This contrasts with the other tasks where the animacy main 

effect was mainly due to increases in τ for inanimate words. Responses to inanimate 

words were also more variable than responses to animate words in all tasks. In the 

SEMCAT task this was due to an increase in σ whereas in the other tasks it reflected an 

increase in τ. Thus, unlike the lexical discrimination tasks, the slower classifications of 

inanimate words in SEMCAT are not confined to slower RTs. This is shown in the flatter 

slopes of the frequency and animacy functions in Figure 5 compared to Figure 4. 

INSERT TABLE 6 ABOUT  HERE 

The interaction between frequency and animacy in mean RT was small, but highly 

significant. It was in the opposite direction to all other tasks, and so is negative in Figure 

5.  Specifically, the advantage for animate over inanimate items was larger for HF than 

LF words, mainly because of a marginally significant effect on µ. Analyses of the first 

and last vincentiles showed that animacy and frequency had highly significant effects on 

both fast and slow responses. The reversed interaction between frequency and animacy 

was significant for the first vincentile, and reflected a 25 ms larger animacy effect for HF 
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than LF words. The effect for the last vincentile was of the same magnitude (28.5 ms) but 

not significant implying greater variability in the last vincentile.  Inspection of Figure 5 

confirms that, like the main effect of animacy, the reversed interaction was due to a shift 

in the overall location of the distributions rather than being confined to slow responses 

and therefore does not appear to be an artifact of the relatively poorer ex-Gaussian fit for 

the slower vincentiles.  

INSERT FIGURE 5 ABOUT HERE 

A possible explanation of the reversal of the interaction relative to the other tasks is 

suggested by the pattern of error rates. This measure showed the strongest evidence of the 

reversed interaction. In contrast to all the other tasks, HF words show a larger animacy 

effect on total (misclassifications + misses) error rate (Animate = 5.5%, Inanimate= 

11.0%) than LF words (Animate= 13.7%; Inanimate= 9.9%). The error rate for HF 

inanimate items is particularly striking because the same items yielded less than 2% 

errors in all other tasks. LF words also showed a reversal of the usual trend towards more 

accurate performance for animate than inanimate items. This apparently reflected a 

speed-accuracy trade-off because, as can be seen in Figure 2c, LF animate words were 

classified more quickly, but less accurately than LF inanimate words.  

The pattern of speed-accuracy relationships in SEMCAT suggests that participants 

were biased to respond “yes” (i.e. animate) to familiar (usually HF) words and “no” 

(inanimate) to less familiar (usually LF) words. A tendency to respond “inanimate” to LF 

words explains the high error rate for LF animate items as well as the reduced frequency 

effect on error rate for inanimate words: participants are biased to make fast, but 

incorrect, “animate” responses to HF words while the bias to respond “inanimate” to LF 

words enhances accuracy for this condition and reduces the WFE. Consistent with this 

interpretation, the misclassification rate in the LF inanimate condition was lower than in 

the LDT (6.4% vs. 9.4%) even though SEMCAT yielded a higher error rate than the LDT 

in every other condition. Logically, the misclassification rate should be higher for 

semantic categorization than lexical classification because participants cannot make 

semantic judgments about items that they do not know to be words. The fact that this 

does not hold for LF inanimate words is consistent with the view that low familiarity 



In Press JEP: HPP, 2001 

leads to a bias to respond “inanimate”. The decision bias can also account for the 

reversed interaction effect on RT because the two conditions in which the familiarity bias 

could enhance speed of classification are HF animate and LF inanimate words. The 

decision bias would therefore increase the RT animacy effect for HF words and reduce it 

for LF words giving rise to the observed interaction of a larger animacy effect for HF 

than LF words. 

Further insight into the nature of the familiarity-bias derives from comparisons of RT 

for correct and incorrect responses. Incorrect responses to inanimate words of both HF 

and LF were faster (47 ms and 28 ms, respectively) than those for corresponding correct 

responses. In virtually every other condition15 of every task, wrong responses and 

mispronunciations were slower than corresponding correct responses (Mean difference: 

167 ms, Range:41-366 ms). Thus, the “animate” responses that subjects erroneously 

made to inanimate words were faster than their correct responses to these items, while 

incorrect “no” responses to animate words were 81 ms slower than correct responses to 

the same items. This pattern of relationships is consistent with the possibility that 

“animate” responses sometimes reflect a fast familiarity-based process while judgments 

that a word is not animate rely on the outcome of a different, more slowly operating 

process.  

The hypothesized tendency to make responses on the basis of item familiarity could 

be specific to conditions in which participants performed a series of tasks with different 

response requirements. In particular, half of the participants completed the SEMCAT task 

immediately after the LDT so the familiarity bias could reflect some form of carry-over 

effect. To test this possibility, the pattern of mean RT data was compared for participants 

who completed SEMCAT before (N= 36) or after (N=38) the LDT. The only significant 

difference between the groups was a marginal interaction between task order and the 

animacy effect for HF words (F(1,72)= 4.09) reflecting a somewhat larger animacy effect 

on RT when SEMCAT followed the LDT. This is consistent with an enhanced familiarity 

bias, but there were no accompanying changes in error rate, and the overall patterns of 

both speed and accuracy were identical regardless of order. Thus, while the familiarity 
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bias might be enhanced by prior exposure to the LDT, it does not appear to be solely due 

to carry-over effects.  

Differences between task clusters. To provide further insight into the nature of the 

differences between the three task clusters, ANOVAs were conducted comparing overall 

performance, and the effects of frequency, animacy and their interaction on each 

dependent measure for each pair of tasks. The results of these comparisons are presented 

in Table 7. The W/NWNAM and WNAM tasks did not differ significantly on any 

measure. The only significant differences between LDT and LEXNAM were in the 

overall location of the distributions – LEXNAM responses were about 125 ms slower 

than lexical classifications - and the slightly larger frequency effect on errors observed in 

the LDT. 

INSERT TABLE 7 ABOUT HERE 

The naming and lexical discrimination task clusters differed in overall location and 

distributional shape, but nevertheless yielded similar patterns of effects across the various 

measures. The overall RT distributions for the LDT and LEXNAM tasks were more 

skewed and more variable than those for the two naming tasks, even though the LDT was 

significantly faster than the naming tasks in mean RT and µ, while LEXNAM was 

significantly slower on these location measures. The other major difference between the 

two task clusters is that frequency, and to a lesser extent, animacy had stronger effects on 

LDT and LEXNAM than on the standard naming tasks. The large difference in the effect 

of frequency on mean RT that was a focus of this research is due to changes in both the 

location and the shape of the RT distributions for HF and LF words. The discrimination 

tasks showed larger frequency effects on µ and τ than either naming task and, although 

the WFE was greater on µ than τ for the W/NWNAM and WNAM tasks, it was greater 

on τ than µ in the LDT and LEXNAM tasks. This replicates Balota and Spieler’s (1999) 

finding of a larger τ frequency effect in LDT than naming. 

Despite the differences in the general RT distributions associated with naming and 

discrimination tasks, they also show similarities. Frequency effects were larger than 

animacy effects and both were larger in later vincentiles and were therefore reflected in τ 

as well as in location measures. The tasks in both clusters also showed an interaction 
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between frequency and animacy due to a larger animacy effect for LF words, which 

manifested in all tasks primarily in measures of location rather than skew. This common 

pattern of frequency and animacy effects is different from that observed in SEMCAT. 

SEMCAT mean RT was substantially longer than for any other task but again this 

difference was due to different changes in distribution shape for different task 

comparisons.  The overall SEMCAT distribution was higher in the location (µ) and 

variability (σ) of the body of the distribution, and was more skewed (τ), than the two 

naming tasks, with the biggest difference in τ. SEMCAT was also significantly different 

from the LDT on all three ex-Gaussian parameters, but the largest difference was in µ 

rather than τ. The only ex-Gaussian parameter that significantly differentiated SEMCAT 

from LEXNAM was τ: the overall skew of the SEMCAT distribution was greater than for 

LEXNAM. In addition to these overall differences in distribution shape, SEMCAT also 

differed from each of the other tasks in the effects of frequency, animacy and their 

interaction on mean RT. For the two standard naming tasks, the differences between all 

of these effects were due to changes in µ. Location also accounted for the differential 

animacy and interaction effect when SEMCAT was compared with LDT and LEXNAM, 

but the differential WFE in these tasks was primarily due to the larger τ component to the 

frequency effect for the two tasks requiring lexical discrimination. SEMCAT also 

differed from the other tasks in the direction of the frequency by animacy interaction on 

RT and in the presence of an interaction in the pattern of errors, which was not evident in 

any other task. These last differences appear to reflect some form of familiarity bias as 

described above, but such a bias does not provide an explanation of the greater overall 

skew of the SEMCAT data.  

EXPERIMENT 2 

Three of the tasks in the Experiment 1 battery relied on pronunciation responses that 

were measured using vocalization onset latency recorded by a voice key triggered by an 

above-threshold vocal input. As demonstrated in the regression analyses of Experiment 1, 

such measures are influenced by the phonological characteristics of the initial phonemes 

of target items (e.g., Treiman et al., 1995). The differences between tasks could, 

therefore, be due to pronunciation-specific factors. The task most frequently used to 
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estimate the contribution of such factors is the “delayed naming task”, in which 

participants are presented with a stimulus word but told to withhold pronunciation of the 

item until they are presented with a cue. With sufficiently long delays between stimulus 

presentation and the cue to the pronounce the word, pronunciation latencies in this task 

should be influenced only by variables related to production.  

Method 

Participants The participants were 24 different individuals from the same 

population as tested in Experiment 1. 

Stimuli and procedure Only word stimuli were presented in this experiment. The 

stimuli were the five word lists from Experiment 1. Items were displayed in the center of 

the screen for 1200 ms exactly as in the naming task of Experiment 1. Participants were 

told not to read the word when it was presented, but to delay producing their 

pronunciation until the appearance of a pronunciation cue (***).  The cue was presented 

following stimulus offset in the same location as the target item. To ensure that 

participants could not anticipate the cue, the delay between target offset and the 

pronunciation cue randomly varied among 3 intervals of 600 ms, 900 ms, 1200 ms. Five 

different lists that varied the assignment of items to target-cue intervals were presented to 

approximately equal numbers of participants.  

Results and Discussion 

Trials spoiled by external noise or voice key failures (0.88%) and anticipatory 

responses with RTs of less than 200 ms (1.25%) were removed before analysis, and RTs 

for error responses were removed from the latency analysis. RT mean and variance and 

estimates of the ex-Gaussian parameters were obtained and analyzed using the same 

procedures as for Experiment 1. Table 8 presents the average estimates of the various 

dependent variables for each condition and Figure 6 summarizes the vincentile averages 

and the fitted ex-Gaussian distributions. The fit of the ex-Gaussian was excellent, being 

well within one standard error of the average vincentile value for each vincentile.  

INSERT TABLES 8 AND 9 ABOUT HERE 

Table 9 reports effect magnitudes and significance test results for the various 

measures. The only significant effect of frequency is on total errors. As in Experiment 1, 



In Press JEP: HPP, 2001 

more errors were made to LF words. Two effects were significant in the response time 

measures: mean RT and τ were 9ms and 16ms less, respectively, for inanimate than 

animate words. This contrasts with the animacy effects observed in the standard naming 

tasks where faster responses occurred for animate than inanimate words. Examination of 

Figure 6 confirms that the effect was confined to the slower vincentiles. 

Analyses comparing the delayed naming data with those for the three pronunciation 

tasks of Experiment 1 (WNAM, W/NWNAM and LEXNAM) showed that the delayed 

naming distribution had a faster leading edge (µ) and a smaller µ frequency effect than 

any of the other tasks. The delayed naming distribution was also significantly less skewed 

overall, and yielded a smaller τ frequency effect than either WNAM or LEXNAM. 

Reflecting the opposite effects of animacy, delayed naming also differed significantly 

from the other three tasks in the animacy effect on τ. 

Thus, in contrast to some previous applications of the delayed naming paradigm 

(e.g., Balota & Chumbley, 1984; Balota & Shields, 1990; Goldinger et al., 1997), 

frequency did not influence delayed naming performance. Given that the delay between 

stimulus presentation and the pronunciation cue was at least 1800 ms, this is consistent 

with Monsell et al.’s (1989) claim that frequency does not influence delayed naming 

performance when there is sufficient opportunity for articulatory preparation. The 

absence of a WFE on delayed naming RT also indicates that the WFEs observed in the 

other pronunciation tasks are not due to production-related characteristics of the initial 

phonemes of HF and LF words. There does appear to be a systematic production-related 

difference between animate and inanimate words reflected in the significant animacy 

effects on mean RT and τ. However, this differences appear to benefit inanimate over 

animate words and cannot, therefore, account for the significant animacy advantage 

observed in the other pronunciation tasks. Rather, the production differences may have 

led to an underestimate of impact of animacy on naming performance.  

General Discussion 

This is the first time that performance for the same set of items has been compared 

across such a broad array of word identification paradigms. Before discussing the 

additional insights provided by the RT distributions, it is appropriate to evaluate the mean 
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RT data that have provided the basis of most previous cross-task comparisons of the 

WFE. Paralleling previous research, the WFEs in both WNAM and W/NWNAM (51 and 

46 ms, respectively) were smaller than in the LDT (76 ms). The SEMCAT task yielded a 

WFE on mean RT (70 ms) that was statistically equivalent to the LDT. This result is 

consistent with previous research using a semantic categorization task requiring 

animate/inanimate classifications (Monsell et al., 1989; Forster & Shen, 1996) but not 

with some other semantic judgment tasks (e.g., Balota and Chumbley, 1990). The most 

novel addition to this task comparison is the LEXNAM task, which also produced a WFE 

equivalent to the LDT (86 ms).  

Within a conventional view of the lexical processing architecture (Monsell et al., 

1989), the mean RT data imply that the WFE in the LDT reflects a lexical process that is 

also required for both LEXNAM and SEMCAT. This implies that standard naming tasks 

underestimate the lexical WFE  because of the contribution of nonlexical pronunciation 

assembly procedures (Paap et al., 1987). Participants must avoid relying on the 

nonlexical procedure in the LEXNAM task so it produces a lexical WFE equivalent to the 

LDT. The correlational data support the view that naming is influenced by a serial 

pronunciation assembly process (Rastle & Coltheart, 1999; Weekes, 1997) that does not 

contribute to pronunciation responses in LEXNAM because word length was 

significantly correlated with performance in standard naming tasks but not LEXNAM. 

However, the lower unique contribution of frequency to the regression equation for 

SEMCAT compared to the LDT (12.9% vs 27.1%) conflicts with the mean RT data 

showing statistically equivalent WFEs and contradicts the conventional view that 

SEMCAT and LDT performance reflect a common lexical access process. This 

discrepancy reflects the differential impact of word frequency on the RT distributions for 

SEMCAT by comparison with the other tasks which is discussed in detail below. 

One feature of the mean RT data that conflicts with previous research (e.g., Forster 

& Chambers, 1973) is the finding that LDT classification time (566 ms) was faster than 

that for the naming tasks (WNAM= 595 ms; W/NWNAM= 606 ms). We cannot 

conclusively determine why LDT responses were faster than word naming, but it might 

reflect the use of a stimulus set consisting of relatively long, primarily regular words and 
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matched nonwords. This contrasts with much of the existing research comparing LDT 

and naming tasks which has relied on monosyllabic words and nonwords deliberately 

selected to over-represent irregular and/or inconsistent words. There are two reasons why 

this stimulus set might eliminate the speed advantage for naming over LDT responses.  

First, the relatively small proportion of ambiguous words and nonwords, may encourage 

adoption of a less cautious lexical decision criterion than applied in many previous 

experiments and hence reduce overall RT (Stone & Van Orden, 1993). This may have 

been enhanced by a bias to respond “word” encouraged by the use of a word:nonword 

ratio of 5:3. Secondly, the use of relatively long stimuli might differentially slow naming 

compared to LDT responses. Both LDT and naming responses are slower for longer 

items (Forster & Chambers, 1973), but length effects are more marked in naming than the 

LDT (Fredriksen & Kroll, 1976). The regression analyses in Table 2 confirm the 

significant contribution of length to WNAM and W/NWNAM latencies and show no 

effect of length on LDT.  

The apparent discrepancy with previous findings is unfortunate because it raises 

questions about the comparability of the present data to previous literature. However, it is 

also an advantage in the present context because it rules out the possibility that the larger 

WFE observed in the LDT is simply a function of longer average RT: the WFE is larger 

in LDT than naming tasks even though overall LDT classification speed is faster than 

naming time. With this single exception, the mean RT data for the five tasks are 

compatible with previous research on cross-task differences in the WFE. However, this 

measure may obscure differences between the RT distributions for the different tasks.  

The data for all tasks were very well fit by the theoretical ex-Gaussian distributions 

estimated using maximum likelihood procedures. The ex-Gaussian estimates were 

supplemented by analyses of mean RT data across vincentiles that are independent of ex-

Gaussian assumptions. These were completely consistent with the results of the ex-

Gaussian analyses and provide a more direct way of relating distributional changes to the 

predictions of different models.  

Every task in the present battery yielded slower and more skewed distributions for 

LF than HF words. The skew component of the WFE was larger in the LDT than the 
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naming task, however, in contrast to Balota and Spieler’s (1999) finding that the naming 

WFE was entirely due to µ, the present WNAM and W/NWNAM data revealed a 

significant WFE on both µ and τ. This may reflect the use of items that were longer, on 

average than Balota and Spieler’s (1999).  

The results from this task battery provide evidence relevant to four questions that are 

crucial to distinguishing different interpretations of cross-task differences in the WFE. 

First, comparisons of the LDT with the other tasks provide evidence about the 

contribution of task-specific lexical decision processes. Second, comparing the three 

tasks requiring pronunciation responses with the two binary classification tasks sheds 

light on the role of nonlexical processes in naming performance. Third, comparing the 

results for the SEMCAT task with the remainder of the battery provide insight into how 

semantic information contributes to word identification performance. Finally, we address 

to the general question of how effects of familiarity relate to “normal” word identification 

processes. 

Does LDT performance reflect decision processes rather than lexical access? 

The LDT data replicate the increased skew for LF words reported by Plourde and 

Besner (1997) and Balota and Spieler (1999), but this component of the WFE is not 

specific to the LDT. The LEXNAM task produced a WFE almost identical to the LDT 

despite being shifted in location by about 125 ms. The RT distributions for LF words in 

the SEMCAT task were even more skewed than for the LDT but, because the SEMCAT 

distributions for HF words were also heavily skewed, the WFE in this task manifested 

primarily in µ.  

Balota and Spieler (1999) acknowledge that many frameworks predict that RT 

distributions will be more skewed for LF than HF words. In some models skew effects 

arise from general word identification processes rather than from LDT-specific 

mechanisms. For example, parallel activation frameworks that assume an exponential 

activation function (e.g., Morton, 1970) predict a larger proportion of slow responses for 

LF items with higher thresholds (Balota & Spieler, 1999). Similarly, the competitive 

lateral inhibition process assumed by IA frameworks like MROM implies that inhibition 

from similar words will be greater for LF words. LF words should therefore yield a more 
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skewed RT distribution than HF words. Grainger and Jacobs (1996) found that the 

distribution of response times simulated by MROM underestimated the skew of the 

empirical data, for both correct and incorrect word responses. Because their experiments 

and simulations used only LF words, it is unclear whether this reflects a general 

underestimation of the proportion of slow lexical classification responses, or a specific 

underestimate of the enhanced skew for LF words that is observed in the LDT.  

Frequency effects on “1st stage” LDT responses.  Balota and Spieler’s (1999) 

evaluation of the LDT concentrates on the implications of the differential skew predicted 

by the 2nd stage of the original Balota and Chumbley (1984) model. Little attention is 

paid to seeking explicit evidence of the fast first stage responses that are predicted to 

arise from the familiarity mechanism of Balota & Chumbley (1984) and the overall 

activity mechanisms of MROM and DRC.  

All of these models of the LDT task predict a reduced WFE on the leading edge of 

the distribution of LDT responses because all items that elicit FM values (Balota and 

Chumbley, 1984) or summed lexical activity measures (Grainger & Jacobs, 1996) that 

exceed the relevant criterion will yield fast lexical classifications, regardless of their 

frequency (Gordon, 1985). These fast familiarity-based word classifications mean that the 

WFE in the fast tail of the LDT distribution should be smaller than for the LEXNAM and 

SEMCAT tasks because the latter responses cannot be derived from familiarity alone. 

Even though the LEXNAM task is contingent on word/nonword discrimination, the 

unique pronunciation response required cannot be determined from familiarity. Similarly, 

the appropriate semantic categorization of an item cannot be determined from high 

familiarity because, unlike the LDT, there is no correlation between familiarity and the 

required animacy judgment. 

 The vincentile data presented in Figures 1, 4 and 5 clearly show that, although the 

leading edge of the LDT distribution is faster than for the LEXNAM and SEMCAT tasks, 

there is no evidence of the predicted difference in the magnitude of the WFE on fast 

responses. All three tasks showed a significant WFE on the first vincentile and, although 

the magnitude of the effect was slightly smaller in the LDT (33 ms) than in either 

SEMCAT (39 ms) or the LEXNAM task (43 ms), none of the differences between tasks 
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was significant. Thus, at least in terms of this operationalization of how the LDT-specific 

familiarity process should be reflected in the RT data, the results provide no evidence of 

such a process, or at least no evidence that it is unique to the LDT. The greater skew in 

the slow tail of the RT distribution for LF words in both the LDT and LEXNAM tasks is 

compatible with a task-specific decision process like that described by Balota and 

Chumbley (1984), but it could also arise from general word identification processes that 

are common to a variety of tasks (Paap et al., 1987). 

Is the reduced WFE in naming tasks due to nonlexical processes? 

Word naming responses are item-specific and cannot, therefore, be based on 

familiarity or overall lexical activation alone. However, as dual route frameworks 

emphasize, they do not necessarily require lexical retrieval. Although the precise 

predictions of dual route models depend on specific assumptions about the timecourse 

and interaction between routes (Stone & Van Orden, 1993), all variants share two 

fundamental assumptions that yield predictions about the relationship between the RT 

distributions for naming and LDT tasks. First, nonlexical processes operate more slowly, 

on average, than lexical processes; and secondly, word frequency only influences the 

lexical procedure. The nonlexical route therefore has more influence on pronunciations of 

LF words, accounting for the robust finding that phonological influences on 

pronunciation - as reflected in effects of variables like regularity and consistency - are 

more marked for LF words (e.g., Andrews, 1982).  

When extended to RT distributions, these assumptions predict that nonlexical 

influences should lead to truncation of the distribution of RTs by comparison with tasks 

that must rely on the lexical procedure. Moreover, the truncation will be primarily due to 

reduced skew for LF words because assembly-based pronunciations will reduce the 

proportion of responses that must await the outcome of the slow lexical retrieval that is 

characteristic of LF words. When applied to the differential WFE in LDT and naming 

tasks, this is identical to the Balota and Chumbley (1984) account because it predicts a 

reduced skew component to the WFE in tasks that allow non-lexical responses. However, 

the dual route model also yields a prediction about in naming performance that is not 

confirmed by the present data. If naming responses to LF words are sometimes based on 
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nonlexical assembly rather than lexical retrieval, then the WFE within the naming task 

should reduce across the RT distribution. The longer it takes for lexical retrieval to 

complete, the greater the chance that nonlexical assembly will complete before retrieval 

so the WFE reduction should be most marked in the slow tail of the RT distribution. 

Figure 3 shows that this is not the case: the WFE in both WNAM and W/NWNAM 

increases in slower vincentiles, but not as much as in the tasks requiring lexical 

discrimination. 

However, this feature of the naming data cannot be taken as strong evidence against 

dual route models because the prediction that the WFE will reduce for slower responses 

only holds for regular words. For irregular words, lexical and nonlexical processes yield 

different outcomes. Such conflicts will be more common for LF words and might 

therefore enhance skew for irregular words and counteract the reduction in the WFE 

predicted for regular words. Most items in the present sample were regular, but the 

presence of irregular items undermines a strong prediction that the WFE should reduce 

for slow naming responses. Another stimulus characteristic that might explain the 

increased WFE on slow naming responses is word length. Nonlexical assembly processes 

operate serially and yield longer completion times for longer words (Rastle & Coltheart, 

1999). For HF words, the lexical route usually completes first so length will have little 

impact on performance. For short LF words, the nonlexical route may complete before 

the lexical route and contribute to reducing the WFE, but long LF words will be dealt 

with slowly by both routes. Thus, because the present sample included relatively long 

words, the nonlexical process may rarely complete substantially more quickly than the 

lexical route even for LF words. This could explain why there is no evidence of the 

reduced WFE for slow naming responses that dual route models predict for short regular 

words. However, this qualification would undermine the dual route account of the 

difference between LDT and naming tasks because assuming that naming responses for 

long LF words are lexically mediated implies that the two tasks should yield similar 

WFEs. 

The serial nature of the nonlexical process in dual route models may also contribute 

to explaining task differences in the WFE on the fast tail of the RT distributions. The two 
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naming tasks showed a significantly smaller frequency effect on the first vincentile 

(W/NWNAM= 21 ms; WNAM= 22 ms) than any of the other tasks (33-43 ms). This 

appears consistent with Kawamoto and Zemblidge’s (1992) proposal that the nonlexical 

procedure yields a distribution of finishing times with a slower mean, but a larger 

variance than the lexical route. Monsell et al. (1992) suggested that the differential 

variance might reflect a nonlexical assembly process, which “works through the input 

chunk by chunk” (p. 463) so that “delivery of the assembly process’s opinions about 

segmental phonology [is]… more spread out over time, reflecting its essentially left-to-

right operation” (1992, p. 464). The implications of this seriality assumption depend on 

whether non-lexical pronunciation is initiated as soon as the beginning segment(s) of the 

string achieve threshold or only once a pronunciation for the complete string is available. 

The faster leading edge of the distribution of nonlexical completion times that is implied 

by the reduced WFE on fast naming responses might reflect fast articulation of initial 

phoneme segments activated by the nonlexical procedure before lexical retrieval has 

completed. 

These inter-related assumptions about the serial nature of the assembly process and 

the criterion for initiating articulation have been the focus of recent controversy. 

Evidence supporting a serial assembly process has been argued to offer a definitive basis 

for distinguishing between dual route and single-route accounts of word naming 

(Coltheart & Rastle, 1994; Rastle & Coltheart, 1998, 1999). However, the clarity of this 

distinction hinges on accepting the DRC assumption that articulation is initiated only 

when the complete pronunciation has been activated. Recent data demonstrating a variety 

of systematic effects of the nature of the initial phoneme or phoneme cluster on word 

naming latency have been argued to demonstrate that subjects do initiate articulation on 

the basis of initial segments when conditions allow it (Cortese, 1998; Kawamoto, Kello, 

Higareda & Qu, 1999).  

Thus, although the two standard naming tasks differ from the remainder of the task 

battery in both the fast and slow tails of the RT distribution, neither of these differences 

allow a definitive conclusion as to whether word frequency effects are underestimated by 

naming tasks or overestimated by tasks requiring lexical discrimination. But rather than 
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undermining the utility of the RT analysis approach, the present data highlight the 

importance of the additional constraints that such data provide. Mean RT data obscure 

information about the basis of performance differences that are essential to resolving the 

increasingly fine-grained distinctions between current models of word identification. 

Strategic modulation of lexical and nonlexical procedures. Dual route 

frameworks assume that participants can increase their degree of reliance on nonlexical 

assembly when they are required to name nonwords as well as words. The present 

comparison of WNAM and W/NWNAM revealed virtually no differences between the 

RT distributions for words. This does not necessarily provide evidence against the 

independence of lexical and nonlexical procedures because the use of predominantly 

regular words may have provided little incentive for participants to modify their “default” 

weighting of routes as a function of the presence or absence of nonwords. Including 

nonwords does seem to induce strategic changes in the processing of “shallow” 

alphabetic orthographies such as Italian (Tabossi & Laghdi, 1992) and Farsi (Baluch & 

Besner, 1991), but the evidence in English is very mixed (Monsell et al., 1992 but see 

Coltheart & Rastle, 1994; Keefe & Neely, 1990; Lupker, Brown & Colombo, 1997).  

Comparisons of standard naming tasks with LEXNAM also provide evidence about 

the independence of lexical and nonlexical procedures. All tasks require identical word 

responses but the naming tasks yielded RT distributions that differed substantially from 

the LEXNAM task. Dual route frameworks assume that these differences arise because 

the LEXNAM task requires participants to disable or ignore outputs of the nonlexical 

procedure and rely solely on the output of the lexical route. This account predicts greater 

skew for LF words in LEXNAM than naming tasks and so is indistinguishable from 

Balota and Spieler’s (1999) claim that a process specific to lexical discrimination tasks 

yields increased skew in the RT distribution for LF words.  

Although this general difference between the LEXNAM and standard naming tasks 

is consistent with the dual route framework, it is less clear that the model can explain 

why the RT distribution for LEXNAM yields is virtually identical in shape to that for the 

LDT but shifted in location by about 120 ms. Differences between the speed of the fastest 

LDT and LEXNAM responses might be attributed to the time required to retrieve or 
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assemble the word’s pronunciation after lexical retrieval has completed. However, 

because LF words take longer to retrieve by the lexical procedure, nonlexically 

assembled pronunciations should be available for many LF words by the time access 

completes and there should be no need for an additional process following retrieval (Paap 

et al., 1987). The difference between response times in the LEXNAM and LDT should 

therefore reduce for longer RTs and be reflected in skew differences paralleling those 

between LDT and naming tasks. No such differences were observed. 

Lexically contingent naming is a relatively recent addition to psycholinguists’ 

battery of word identification tasks. Forster and Davis (1991) introduced it to evaluate 

nonlexical influences on the masked priming paradigm and it has recently been used to 

evaluate the locus of polysemy (Hino & Lupker, 1996) and regularity effects on English 

and Japanese (Hino & Lupker, 1998).  Hino and Lupker (1996, 1998) found that the 

WFEs on contingent naming were approximately equal to the sum of the LDT and 

naming WFEs. They therefore suggested that contingent naming involves the processes 

required for both LDT and word naming and that “individuals essentially carry out these 

tasks in a sequential order. That is, their decision-making processes are virtually complete 

before they initiate their pronunciation-related processes” (Hino & Lupker, 1996, p. 

1339). Hino and Lupker further assume that WFEs in the LDT and naming tasks reflect 

different task-specific processes: the LDT effect is due to a decision process similar to 

that proposed by Balota and Chumbley (1984) while that in the naming task arises from a 

frequency-sensitive phonological coding process.  

The present contingent naming results are not entirely consistent with Hino and 

Lupker’s (1996, 1998). The WFE on mean RT in LEXNAM was slightly larger than that 

for the LDT but not significantly so, and it certainly did not approximate the sum of the 

naming and LDT effects. The slower overall RT for LEXNAM is consistent with the 

view that it requires some additional process beyond that necessary for the LDT.  Hino 

and Lupker argue that this process is similar to that required for standard naming and is 

frequency-sensitive. But in the present results the latency difference between LEXNAM 

and the LDT is constant across the RT distribution and equivalent for HF and LF words. 

The additional process required for LEXNAM does not, therefore, appear to be 
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influenced by frequency. It might be identified with the time required to retrieve and/or 

execute an articulatory program following lexical retrieval. This account is similar to 

Hino and Lupker’s because it assumes that contingent naming involves sequential lexical 

and phonological retrieval, however the present data imply that the contingent naming 

WFE is entirely due to a lexical process that is essentially the same as that involved in the 

LDT followed by a frequency-insensitive process that retrieves the pronunciation of the 

item. 

Clearly further data using the contingent naming data are required to resolve the 

apparent inconsistencies between our results and those of Hino and Lupker (1996, 1998) 

but there is no necessary conflict between the two data sets. The enhanced WFE in 

contingent naming tasks reported by Hino and Lupker (1996, 1998) were most marked 

for polysemous words and for Kanji characters and irregular English words. By contrast, 

the stimuli in the present experiments were unambiguous and primarily regular and are 

therefore predicted by Hino and Lupker’s account to show a reduced task by frequency 

interaction. Again, RT distribution analysis will contribute to resolving the basis of the 

different findings. Information about the differential slowing of fast and slow responses 

allows a fine-grained evaluation of how the retrieval and pronunciation demands of the 

contingent naming task are coordinated and how and why they differ as a function of 

item type.  

Single-route models of word naming. The discussion has focused on dual route 

frameworks of naming performance because they generate more specific and falsifiable 

hypotheses than single-route accounts. However, the latter can explain much of the 

evidence taken to demonstrate strategic flexibility. Parallel activation frameworks such as 

the IA and PDP models do not assume an independent nonlexical procedure, but these 

models still assume that pronunciations can be assembled from nonlexical constituents to 

account for nonword naming and often assume that nonlexical and lexical activation have 

different time-courses that moderate their impact as a function of task context. Monsell et 

al. (1992) argued that there are two ways of accommodating the functional dissociations 

claimed to demonstrate strategic variability within PDP frameworks. First, such models 

could assume “strategy nodes”, like the “task nodes” incorporated in Cohen, Dunbar and 



In Press JEP: HPP, 2001 

McClelland’s (1990) simulation of the Stroop task, which modulate the relative 

weighting of lexical and nonlexical correspondences. Alternatively, they might invoke 

contributions from the semantic network that act to “clean up” the patterns of activation 

in orthographic and/or phonological networks. Semantic clean-up has been argued to 

provide a possible account of the different patterns of performance associated with the 

various subtypes of acquired and developmental dyslexia (Plaut et al., 1996) and may 

allow a parallel account of task-based strategy effects (Monsell et al., 1989).  

Taking a different tack, Hino and Lupker (1998) claimed that their LDT and 

contingent naming data are compatible with PDP models precisely because these models 

do not assume an explicit distinction between lexical and nonlexical representations. 

Because these models assume that the same network of orthographic units “drive both the 

original generation of phonological codes in standard naming and the regeneration of 

phonological codes in …[contingent] naming” (p. 1448), Hino and Lupker argue that 

they predict that contingent naming should yield the same pattern of effects as the naming 

task, but at an inflated magnitude, as they observed for manipulations of both polysemy 

(Hino & Lupker, 1996) and Japanese script type (Hino & Lupker, 1998). The LDT yields 

different patterns of effects because it does not require phonological activation (Hino & 

Lupker, 1996, 1998).  

The present results are compatible with this elaboration of the PDP model in the 

sense that the overall pattern of stimulus effects was consistent across all four naming and 

lexical discrimination tasks. All showed main effects of frequency and interactions 

between frequency and animacy due to a larger animacy effect to LF words particularly 

among slower responses. The magnitude of the WFE, but not the animacy interaction, 

was enhanced in the lexical discrimination tasks. The qualitative similarity of the 

distributions for these four tasks seems to implicate a common process, which is 

compatible with the PDP assumption that they all reflect activation of a common lexical 

network. However, it is not clear how these models would explain why the animacy 

effect does not increase in lexical discrimination tasks in parallel with the effects of 

frequency.  
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In fact, it is not clear why animacy effects should be observed at all in these tasks. 

Animacy is irrelevant to either pronunciation or lexical classification, so there is no 

obvious reason why responses should be faster to animate than inanimate words. The fact 

that the delayed naming data showed the opposite effect of animacy demonstrates that the 

animacy effect on pronunciation responses is not due to a confounding with production-

related variables which should, if anything, have reduced the advantage for animate over 

inanimate words in the WNAM, W/NWNAM and LEXNAM tasks.  

The effects of the animacy manipulation on the non-semantic judgment tasks may 

reflect confounding with another variable that influenced lexical retrieval speed. That is, 

despite the matching of normative frequency and the restriction to concrete nouns, the 

animate words might be more familiar, or more concrete or imageable than the inanimate 

words. It is not possible to entirely discount a confounding with familiarity, but if this 

were the basis of the animacy effects they should have shown a pattern of cross-task 

differences similar to those of normative frequency – that is, the effects should have been 

larger in lexical discrimination than naming tasks. Animacy effects were slightly larger in 

the two lexical discrimination tasks than in WNAM or W/NWNAM and significantly so 

on some measures. However, the task difference was much smaller than that due to 

frequency.  

Alternatively, the animacy effects may reflect the influence of semantic activation on 

lexical processing. Whether by virtue of their animacy per se or because of a correlation 

with semantic variables such as concreteness, top-down feedback might enhance 

activation of animate words. Such an interpretation is consistent with the fact that 

animacy effects were more marked for slower responses to LF words because semantic 

activation would take some time to build up. The SEMCAT task was included to provide 

insight into semantic activation and judgment processes.  

What processes underlie semantic categorization performance? 

According to Balota and Spieler’s (1999) claim that τ frequency effects reflect a 

decision strategy specific to lexical classification tasks, semantic categorization tasks 

should yield RT distributions that are less skewed than those for the LDT, particularly for 

LF words. By contrast, if the τ frequency effect in the LDT reflects word identification 
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processes that can sometimes be by-passed for HF words, as implied in models like 

MROM, then the SEMCAT task should show skew effects for LF words that are 

equivalent to those observed in the LDT. The SEMCAT data do not correspond 

completely to either of these extreme alternatives. There are three major differences 

between the SEMCAT data and that for the other tasks. First, the overall RT distribution 

for SEMCAT was much more positively skewed than that for any other task: τ was 

higher for every condition of SEMCAT than for the corresponding condition of the other 

tasks, including the LF conditions of LDT and LEXNAM.  Second, SEMCAT was the 

only task in which the animacy effect was greater than the effect of frequency. The 

SEMCAT animacy main effect was reflected in both µ and σ, but not τ while the 

considerably smaller animacy main effect observed in the other tasks was primarily 

reflected in τ. Third, whereas all other tasks showed a larger animacy effect for LF 

words, in SEMCAT the animacy effect was larger for HF words and of similar magnitude 

across the complete RT distribution. In SEMCAT, there is a clear separation between 

animate and inanimate words, of both HF and LF, throughout the RT distribution while 

the RT distributions for animate and inanimate words in all other tasks only diverge for 

LF words and only as RT increases (see Figure 1).  

Examination of the SEMCAT RT and accuracy data suggested that performance was 

influenced by a bias to make fast “yes” responses to animate words. The accuracy data 

also suggested a bias to respond “no” to LF words, but it did not lead to the fast errors 

associated with animacy judgments. Thus, evidence that the item is familiar appears to 

trigger a fast “animate” response, which leads to a high error rate for HF inanimate words 

and may yield fast correct “guesses” to LF animate words before semantic information 

has become available. By contrast, when items are not highly familiar, there is a bias to 

response “inanimate” which appears to operate after the results of deeper lexical 

processing – perhaps when this processing does not clearly specify the correct response.  

Although supported by a variety of details of the speed and accuracy data, the precise 

basis of the familiarity bias is unclear. The bias did not appear to depend on carry-over 

effects from prior experience at lexical classification. The familiarity bias may arise 

because participants in some sense associate frequency with animacy and tend to classify 



In Press JEP: HPP, 2001 

frequent words as animate and infrequent words as inanimate. Alternatively, it might 

occur because familiarity information becomes available earlier in processing than the 

semantic information that is required to judge animacy so that, in speed-pressured 

conditions, participants have difficulty inhibiting a response based solely on item 

familiarity even when it is irrelevant to the task at hand.  

Ironically then, although the LDT results provided no direct evidence of a 

familiarity-based process, the results of the SEMCAT task do appear to implicate a 

familiarity-based decision mechanism although it is different from that Balota and 

Chumbley (1984) hypothesized to underlie the LDT. One major difference, of course, is 

that the animacy judgments required for SEMCAT are not correlated with word 

frequency so the bias causes errors for inanimate HF words and LF animate words. 

Secondly, the bias does not appear to yield fast “inanimate” responses to LF words. There 

is therefore no evidence for an initial stage in which both highly familiar and highly 

unfamiliar items yield fast responses proposed by Balota and Chumbley’s (1984) account 

of the LDT.  

The further question that needs to be addressed about the semantic categorization 

task concerns exactly how participants make correct animacy judgments. The results 

imply that the process underlying such judgments yields faster “animate” than 

“inanimate” responses. The advantage for “animate” responses might be exaggerated by 

the familiarity bias, but familiarity is unlikely to provide a complete explanation of the 

large animacy effect because the average animacy effect on SEMCAT mean RT (92 ms) 

was larger than the frequency main effect (70 ms), such that classification of animate LF 

words were faster than for words that were HF but inanimate. Monsell et al. (1989) 

observed a similar speed advantage for “person” over “thing” judgments. The speed 

advantage might be taken as evidence that animacy is explicitly coded as a semantic 

feature, while judgments that an item is inanimate require some more inferential process. 

For example, Smith, Shoben and Rips (1974) proposed that items that cannot be 

classified on the basis of global similarity to the relevant category require a more detailed 

and “deliberative” evaluation of defining semantic features. However, such a view seems 

to predict a greater proportion of slow responses to inanimate than animate words which 
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should be reflected in differential skew. In fact, the differences between animate and 

inanimate words were relatively constant across the RT distribution and so reflected 

primarily in µ. This implies that the animacy effect reflects an additional process that 

adds a constant increment to “inanimate” responses. This seems most parsimoniously 

identified with the speed advantage for positive over negative decisions (e.g., Sternberg, 

1969) and, like the familiarity bias, implies that participants treated the task as requiring a 

“yes/no” judgment as to whether the item referred to an animate object. By this view, 

correct semantic categorization judgments that are not based on familiarity rely on lexical 

and semantic retrieval processes that are similar for animate and inanimate words, 

followed by a binary decision and/or response related process that is faster for “yes” than 

“no” responses. 

Thus, semantic categorization does not provide as pure a measure of lexical or 

semantic retrieval as has been assumed (e.g., Balota & Chumbley, 1984; Forster & Shen, 

1996). Participants are capable of making very accurate judgements of animacy 

demonstrating that semantic information is effectively retrieved for most items. However, 

they seem to be unable to avoid the influence of familiarity-based information even 

though it is not a reliable guide to the required response. In this sense, the semantic 

categorization task appears to be just as susceptible to task-specific decision strategies as 

LDT and naming tasks and the WFE in this task provides no more valid an index of the 

role of word frequency in lexical access  than any other word identification task. This 

means that the demonstration of equivalent WFEs on mean RT in SEMCAT and the LDT 

cannot be taken as evidence that they rely on a common access procedure as has been 

assumed within the “conventional” view of lexical access (Monsell et al., 1989). But 

equally, the absence of a WFE in semantic categorization data as reported by Balota and 

Chumbley (1984) does not prove that frequency does not influence lexical retrieval. Each 

task needs to be analyzed to determine the relative contributions of general lexical 

retrieval and specific strategies that allow participants to generate the required response. 

RT distribution analyses provide a sensitive methodology for conducting this analysis. 
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What is the relationship between familiarity and word identification? 

The issue most central to interpreting both the present results and the two earlier 

investigations of RT distributions in word identification tasks concerns the processes that 

are indexed by τ. Balota and Spieler (1999) attributed the τ component of the WFE to a 

decision process specific to the LDT. Although the present results replicate this finding, 

they show that high τ is also characteristic of the SEMCAT task, which yielded 

considerably larger τ estimates than all other tasks in every stimulus condition. The τ 

effects in the other tasks were larger for LF words, so the differential skew in SEMCAT 

is most marked for HF words.  

Thus, the smaller τ frequency effect in SEMCAT compared to LDT and LEXNAM 

occurs not because τ is larger for LF words in lexical discrimination tasks – as would be 

expected if τ reflects an additional decision process – but rather because HF words were 

associated with a larger τ in SEMCAT than in the other two tasks. Framed in this way, τ 

might well be identified with lexical retrieval processes that can sometimes be by-passed 

for HF words in the LDT and for LF regular words in naming tasks. LDT responses to 

HF words can sometimes be made before lexical retrieval has completed because the item 

is high in familiarity or elicits high global activation. This might account for why HF 

words show less skew in LDT than SEMCAT. Naming responses are sometimes 

generated nonlexically, particularly for LF words, so naming tasks show reduced skew 

for LF words compared to tasks that preclude reliance on nonlexical assembly. 

The present results do not provide a definitive basis for distinguishing between 

Balota and Spieler’s (1999) claim that τ reflects a strategy specific to lexical 

discrimination tasks and the alternative possibility that it indexes a lexical retrieval 

process common to a variety of word identification tasks. The enhanced τ component of 

the WFE combined with the fact that WFE effects in SEMCAT manifested in µ rather 

than τ, is consistent with Balota and Spieler’s (1999) claim that τ reflects a process 

specific to lexical discrimination. However, the fact that τ was greater for LF than HF 

words in the naming and LEXNAM tasks as well as the LDT, and that τ was high for all 

conditions of SEMCAT, suggests that it reflects a general rather than task-specific 

process. 



In Press JEP: HPP, 2001 

It is important to acknowledge that Balota and Spieler’s (1999) interpretation of their 

data did not rely solely on comparisons of the WFE in LDT and naming. They also 

investigated the effects of stimulus repetition and its interaction with frequency because 

the combined effects of frequency and repetition provide strong constraints that can be 

used to distinguish between different models of lexical retrieval. Balota and Spieler’s 

(1999) difficulty in formally simulating their data with different two-stage models arose 

primarily from the joint effects of these variables. However, it is clear that repetition 

effects do not reflect a unitary mechanism (e.g., Forster & Davis, 1984; Monsell, 1985). 

Thus, as Balota and Spieler’s final hybrid model exemplifies, complex relationships 

between frequency and repetition effects can be accommodated by assuming that 

repetition has independent effects on different word identification processes. Such an 

assumption makes it difficult to draw definitive conclusions about the processes 

implicated by a particular set of behavioral outcomes. Balota and Spieler’s approach 

demonstrates the benefits of RT distributional analysis in providing additional constraints 

that can contribute to testing distinctions between different combinations of assumptions. 

Further investigations of the effects of repetition on RT distributions obtained in a wider 

variety of tasks are necessary to evaluate the validity of their hybrid model.  

The more general conceptual issue underlying Balota and Spieler’s (1999) 

theoretical approach concerns whether the mechanism responsible for familiarity effects 

is independent of the lexical retrieval process, as implied in Balota and Chumbley’s 

(1984) original two-stage model. Monsell et al. (1989) pointed out that a familiarity 

estimate of the form described by Balota and Chumbley could be derived from on-going 

lexical retrieval rather than being computed extra-lexically. This is the assumption 

incorporated in the MROM and DRC models, but these models still assume that this 

information is only recruited for the LDT in which it provides an alternative basis for a 

classification response which is artifactual to “true” lexical retrieval (Grainger & Jacobs, 

1996).  

It is not, however, necessary to assume that familiarity and lexical identification 

exert separate influences on performance. Reichle, Pollatsek, Fisher and Rayner (1998) 

have recently proposed a model of word identification in which familiarity estimates 
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contribute to the normal word identification process. This model was developed to 

account for the pattern of eye movements during reading and, in particular, for evidence 

suggesting that different mechanisms underlie the programming of saccadic eye 

movements to a new word in the text and the shift of covert attention to that word. 

Reichle et al. (1998) argue that such evidence indicates that lexical retrieval is not “the 

engine that drives eye movements” (Reichle et al., 1998, p. 129) as assumed by earlier 

models of eye movement control (e.g., Morrison, 1984). Their new model therefore  

“decouples covert attention shifts from eye movement programming” (p. 133) by 

distinguishing between the early computation of a word’s familiarity and the ultimate 

retrieval of a single lexical representation. Because familiarity provides an index of “the 

proficiency and probability of successful resolution” of the retrieval process it  serves as a 

“signal for the initiation of an eye movement program [while]… completion of lexical 

access [is] the signal for a shift of covert attention” (p. 133). Critically, in the present 

context, Reichle et al. (1998) do not attribute familiarity and lexical retrieval effects to 

different mechanisms. Both are computed by a single “word recognition module”, and 

both are assumed to be affected by many of the same factors. They point to the parallel 

between the familiarity/ lexical retrieval distinction and the distinction between 

“matching on global similarity” and “retrieval through reintegration, or pattern 

completion” that has been incorporated into a number of models of memory including 

MINERVA (Hinzman, 1988), CHARM (Eich, 1985), SAM (Gillund & Shiffrin, 1984) 

and the matrix model (Humphreys, Bain & Pike, 1989). In such models, a memory probe 

can either be compared with either the collective contents of memory to produce a scalar 

value that represents the item’s global familiarity or similarity to other memory traces or 

used to retrieve a vector representing the content of the memory representation of the 

item. The retrieval process is more difficult and computationally demanding than the 

matching process because it requires retrieval of unique item information, but both 

processes are derived from a single memory system. Similarly, “the familiarity check and 

lexical access could be the product of the same word recognition module” (Reichle et al., 

1998, p. 133). 
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The relevance of Reichle et al.’s model to the present discussion is that it provides a 

functional explanation of the role of familiarity in normal word identification. If the only 

purpose in computing a measure of lexical familiarity early in lexical processing were to 

allow participants to make quick LDT responses, then it would be reasonable to view this 

computation as essentially artifactual with respect to “normal word identification”. 

However, according to Reichle et al.’s (1998) rationale, deriving an early estimate of the 

probability that the word will be successfully retrieved is crucial to the efficient co-

ordination of eye movements during normal reading. This estimate might also be co-

opted to facilitate performance in laboratory word identification tasks like the LDT. The 

apparent contribution of familiarity to performance in the semantic categorization task, 

where it is irrelevant to the required judgment, is consistent with the view that familiarity 

is computed as part of the normal word identification process and influences performance 

even when it leads to errors. 

Recognizing that familiarity-related processes may play an important role in normal 

word identification might also explain the qualitative similarity of the RT distributions 

obtained in the lexical discrimination and naming tasks. Despite differences in overall RT 

and the magnitude of the τ frequency effect in the two task clusters, all four naming and 

lexical discrimination tasks showed increasing effects of both word frequency and 

animacy across the RT distribution. As discussed in relation to PDP models of word 

naming, parallel effects of these stimulus variables on the RT distributions for 

discrimination and naming task is consistent with the involvement of a common process 

that is required for all tasks. However, the different response requirements associated 

with word naming and lexical classification appears to either “compress” the RT 

distribution associated with naming or “stretch” the distribution for the lexical 

discrimination tasks. Within Reichle et al.’s (1998) model, both types of task might be 

assumed to rely on a similar evidence accumulation process that first gives rise to a 

measure of overall familiarity and gradually provides the more detailed information 

associated with lexical retrieval, which is reflected in the increasing animacy effects with 

RT observed in both tasks. Differences between the tasks might then be attributed to the 

nature and efficiency of the processes that make use of this information to produce the 
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required response. People’s practice with the task of reading words aloud may allow them 

to generate the appropriate response quickly and efficiently from the outputs of the word 

identification process, while the unfamiliar requirement of making button-press 

classifications about item lexicality requires greater refinement of the evidence to 

generate a response, particularly for LF words. The contribution of these differential 

response-related processes is reflected in the relative compression and stretching of the 

RT distributions obtained in the naming and lexical discrimination tasks.  

Conclusions 

The results replicated virtually all of Balota and Spieler’s (1999) findings about the 

differential effects of word frequency on RT distributions for naming and LDT tasks. 

However, the data provided by a broader array of tasks and more refined evaluations of 

the distributional data do not unequivocally support their conclusion that the large WFE 

obtained in the LDT reflects a task-specific decision process. The present pattern of data 

is equally compatible with the view that all of the tasks included in the current battery 

rely on a common, frequency-sensitive, word identification process, but that this process 

can sometimes be by-passed or reduced for HF items in the LDT because of the influence 

of familiarity-based processes; and for LF words in naming tasks because of the 

contribution of nonlexical assembly mechanisms. Such an analysis is potentially 

compatible with a variety of frameworks including dual route, IA and PDP models 

although all have difficulty dealing with some details of the data. 

The difficulty in conclusively distinguishing between the predictions of conceptually 

distinct models reflects the fact that the precision of the data that we have presented 

exceeds, in many respects, the precision of the models that they were collected to test. It 

has been possible to draw out specific predictions about RT distributions from a variety 

of models, but it is often difficult to determine exactly how these predictions would be 

manifested within the complex hybrid models that are dominating the word recognition 

literature.  Computational models are proliferating as quickly as the power of computers 

that allow them to be developed, so it is increasingly important to provide tighter 

empirical constraints that can be used to discriminate between overlapping models and 

determine the relative validity of different conceptual approaches. The present data 
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demonstrate the potency of analyses of RT distributions as a source of such empirical 

constraint and as a stimulus to development of more comprehensive and psychologically 

valid models.  
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Appendix A 

Listing of the mean RT for each word in each of the tasks included in Experiment 1. 

 
WORDS NAM NWNAM LEXNAM LDT SEMCAT NAM NWNAM LEXNAM LDT SEMCAT

  High Frequency Animate   Low frequency Animate  
artist 502 579 614 480 660 alderman 607 705 771 630 653 
bride 525 620 603 506 645 assassin 573 733 784 658 720 
buffalo 516 587 601 579 718 attacker 513 652 648 523 734 
candidate 589 691 715 666 762 bitch 501 610 609 485 679 
carpenter 556 643 695 524 700 bluebird 561 618 610 533 709 
chairman 611 660 739 532 647 boar 543 667 748 590 684 
consumer 563 664 718 561 747 cheetah 636 748 783 631 677 
cow 530 599 644 523 600 chef 601 708 776 535 710 
donkey 499 616 553 548 659 cleric 637 824 758 685 831 
editor 484 576 647 530 667 dolphin 532 605 631 573 592 
human 647 673 675 535 573 foal 561 768 819 591 863 
insect 496 632 580 532 707 guru 626 712 842 687 742 
king 536 606 640 494 702 juror 697 761 779 689 705 
kitten 531 595 680 495 665 kidnapper 572 670 686 548 637 
maid 469 559 585 476 677 mermaid 500 576 574 567 683 
mayor 502 593 655 472 713 playboy 526 623 685 520 655 
officer 479 608 618 560 707 python 578 666 745 597 713 
pig 531 578 607 504 595 ruffian 595 683 698 758 958 
rabbit 484 566 565 541 642 sentry 635 759 877 688 739 
rat 459 522 562 520 626 spouse 653 732 786 573 797 
senator 622 761 752 553 730 stallion 640 759 839 589 692 
son 570 626 708 492 615 suitor 640 712 819 624 855 
thief 560 630 683 520 677 teenager 553 627 665 527 629 
tiger 537 596 615 494 600 tortoise 571 692 709 581 680 
worm 501 554 658 504 693 umpire 548 692 712 572 748 
ant 554 522 710 518 684 admirer 592 575 683 560 712 
assistant 612 590 620 527 734 analyst 565 555 751 535 796 
colonel 807 693 911 654 759 anteater 705 713 880 768 910 
cousin 569 558 631 479 647 auditor 614 559 730 548 840 
deer 560 526 633 564 659 boatman 585 625 731 550 720 
doctor 507 502 571 501 575 caller 606 558 776 537 774 
dragon 539 564 603 447 748 caretaker 639 605 686 540 687 
eagle 542 547 598 509 635 cobra 595 601 722 504 680 
engineer 530 547 587 517 705 cockatoo 591 648 679 547 676 
female 582 572 647 491 587 commuter 639 631 839 703 773 
fox 554 534 635 507 607 gazelle 624 557 729 599 848 
frog 559 550 686 486 726 grandson 583 578 661 591 715 
gentleman 568 593 654 492 666 inmate 653 647 825 663 1048 
goose 549 507 665 494 689 migrant 558 528 638 563 762 
horse 509 537 662 468 613 nudist 604 564 707 539 715 
lawyer 553 516 652 462 653 parson 624 584 868 588 855 
passenger 548 556 645 474 692 plumber 597 570 655 536 636 
pilot 567 569 643 500 636 poodle 599 576 736 519 670 
poet 578 539 655 472 704 rogue 554 561 711 576 905 
princess 564 584 663 511 674 shrimp 596 617 812 574 775 
rider 521 508 625 458 803 squaw 746 686 930 736 962 
teacher 566 576 606 513 600 stag 614 587 775 589 890 
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traveller 552 546 671 467 648 steward 711 664 814 510 724 
turtle 559 546 684 514 565 walrus 604 588 725 658 731 
wife 490 539 621 455 571 weasel 527 526 668 560 803 
adult 591 544 585 474 563 addict 649 594 677 546 713 
bird 548 525 544 479 714 antler 660 660 745 648 815 
chief 716 793 698 482 773 burglar 622 600 625 542 641 
clerk 633 586 666 504 667 catfish 621 574 673 531 751 
companion 681 672 638 528 631 celebrity 706 689 740 539 662 
composer 690 607 685 570 717 columnist 712 710 745 596 776 
cult 642 596 649 544 1052 doorkeeper 626 642 641 605 713 
customer 586 639 596 523 581 drake 606 603 697 638 770 
duke 627 591 649 559 772 florist 635 614 608 481 815 
elephant 562 584 578 486 694 gunman 617 586 661 634 634 
fairy 610 597 648 507 705 hostage 565 565 610 533 662 
girl 572 547 579 460 514 janitor 635 619 645 583 675 
hunter 575 530 599 494 609 jockey 592 570 639 533 620 
knight 562 585 607 477 587 layman 590 580 659 623 605 
lion 552 540 601 483 623 mammal 653 611 627 529 803 
monkey 527 520 561 464 596 midwife 571 533 584 537 696 
negro 617 555 644 612 681 motorist 566 602 601 560 686 
owl 565 576 627 482 615 nun 556 516 593 582 595 
pupil 591 592 605 526 697 peacock 581 579 594 485 787 
servant 641 679 643 473 586 ranger 552 568 608 535 646 
soldier 633 585 600 502 539 slug 656 659 671 532 893 
uncle 557 551 574 477 611 sniper 639 653 784 670 745 
visitor 574 555 585 460 565 terrier 688 675 707 565 692 
wolf 517 518 533 482 715 vicar 653 666 688 554 745 
worker 499 562 538 511 617 watchdog 568 561 609 541 633 
angel 619 565 646 502 570 boa 588 606 852 842 755 
aunt 568 563 660 574 567 bodyguard 577 578 666 550 651 
baker 524 559 612 510 616 cadet 625 645 762 608 803 
bishop 599 578 634 576 721 camper 570 558 652 550 753 
captain 602 539 622 473 555 cellist 749 883 799 642 894 
child 565 568 623 502 550 codfish 626 617 799 697 681 
citizen 600 639 720 515 581 craftsman 653 649 762 530 602 
commander 634 653 741 593 616 crusader 604 667 776 566 697 
creature 563 607 694 517 791 cyclist 678 670 744 496 630 
farmer 574 567 646 480 624 flea 597 572 689 583 671 
grandmother 596 596 702 573 582 gnome 614 646 717 610 650 
guard 570 557 611 467 587 grub 542 556 731 663 834 
hawk 585 571 668 538 699 hawker 567 560 698 574 776 
hero 546 522 617 539 569 jaguar 659 651 780 578 772 
lady 520 518 545 480 521 lass 525 501 638 613 716 
lamb 490 530 637 440 607 lioness 599 619 670 599 696 
painter 554 579 608 480 562 machinist 707 674 695 553 774 
parent 562 597 648 508 628 mammoth 586 633 715 609 768 
pony 564 544 624 565 638 nymph 561 542 668 625 862 
priest 555 599 642 496 621 octopus 539 565 595 573 613 
principal 557 578 678 581 696 referee 574 624 654 606 746 
sheriff 579 629 733 543 654 refugee 617 591 686 613 709 
singer 564 597 731 556 541 seahorse 653 674 790 560 674 
snake 594 613 706 467 646 waiter 515 502 590 503 661 
student 641 657 721 461 548 wizard 540 520 609 509 617 
actor 529 515 574 517 588 aviator 690 589 746 664 729 
animal 528 536 607 506 618 beatnik 800 713 818 797 945 
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author 532 557 597 561 582 bison 709 643 750 687 732 
baby 534 533 535 488 547 culprit 624 650 729 627 764 
beast 640 558 582 527 702 dingo 562 616 631 673 600 
bull 546 571 628 528 591 doe 572 581 769 602 660 
chicken 587 590 622 493 586 drummer 609 603 683 556 692 
crow 620 618 690 561 629 eel 618 565 738 553 700 
daughter 539 579 599 527 527 elk 539 547 690 630 892 
dog 530 515 603 510 581 gangster 590 612 672 577 620 
duck 558 569 591 542 588 golfer 535 540 658 583 571 
emperor 635 633 738 583 630 grocer 607 626 660 571 674 
guest 560 561 612 548 622 gymnast 626 638 709 576 645 
mortal 577 555 652 658 760 heroine 621 607 707 628 739 
prisoner 609 604 693 474 587 hyena 734 641 742 583 795 
sailor 606 637 674 553 532 intruder 554 554 592 590 671 
salmon 699 681 877 554 811 lecturer 553 558 649 617 636 
scientist 615 634 724 546 602 locust 658 611 783 585 769 
sergeant 758 632 766 580 666 logger 607 577 660 635 733 
sister 561 588 667 543 551 newt 675 565 956 728 785 
speaker 661 635 688 560 674 orphan 534 550 661 503 578 
stranger 674 700 735 564 589 pheasant 773 816 935 570 743 
visitor 545 547 573 511 608 prostitute 718 649 690 656 659 
widow 575 547 605 591 685 rosella 617 605 820 647 741 
woman 528 536 595 552 550 shopper 571 553 661 487 633 

  High frequency Inanimate   Low frequency Inanimate  
axe 498 630 623 556 755 amplifier 558 634 724 602 774 
button 492 601 615 516 731 canteen 586 655 660 558 757 
combat 548 636 652 576 766 cosmetic 557 716 692 530 740 
commerce 620 705 802 600 760 dogma 553 695 652 829 776 
compass 551 667 767 540 745 facade 695 710 760 672 755 
cord 541 592 685 542 736 gash 539 591 717 670 685 
curse 571 655 667 532 744 gazette 547 635 703 573 778 
evil 487 563 566 512 775 greed 511 617 656 616 807 
fire 535 592 627 504 650 irony 548 602 671 531 760 
furniture 573 658 655 558 687 kiosk 629 702 724 637 759 
gate 500 578 594 497 687 lattice 542 616 744 628 776 
honey 509 596 622 543 884 leash 511 535 707 649 807 
interval 525 624 637 575 836 limbo 494 592 667 612 878 
island 508 582 627 505 772 loophole 591 758 741 689 764 
jet 505 572 600 486 759 lotion 576 706 753 596 767 
job 489 607 626 478 756 mascara 563 681 679 649 783 
juice 549 652 642 504 817 mead 500 584 664 696 847 
kitchen 537 583 712 494 736 pamphlet 602 673 745 594 751 
label 513 539 581 569 735 passport 551 665 720 540 702 
location 588 656 724 559 687 saxophone 623 674 771 585 808 
mirror 495 567 564 504 707 scoop 670 722 836 525 777 
mystery 480 585 580 498 693 tapestry 563 646 695 562 726 
oxygen 505 574 635 572 737 tarpaulin 740 829 872 753 803 
rocket 470 552 612 496 881 trilogy 668 792 792 600 744 
vegetable 504 594 639 573 724 turban 570 655 749 692 788 
brass 576 537 674 557 821 brawl 555 598 700 587 768 
calm 597 539 691 572 815 calico 701 715 821 683 926 
crime 591 566 672 487 763 chutney 659 667 828 640 964 
ditch 561 532 729 556 798 curry 648 592 825 566 731 
drug 524 505 616 491 826 gutter 553 528 739 548 771 
example 545 581 616 483 790 kennel 632 660 757 527 919 
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fan 550 577 673 478 704 kerchief 850 755 963 738 1047 
fog 594 574 764 583 857 lounge 559 540 635 551 700 
laboratory 638 582 767 549 867 manor 585 579 810 578 1031 
laughter 573 548 664 536 862 microwave 552 552 606 530 795 
leather 542 566 600 530 776 minuet 679 661 912 703 1085 
linen 597 575 752 550 753 obelisk 720 743 815 782 897 
liquid 515 549 601 569 769 outburst 595 596 736 561 899 
list 493 499 613 481 712 pharmacy 671 661 711 588 882 
machine 493 573 581 497 766 poppy 586 565 688 527 945 
medicine 550 542 656 574 799 saucepan 580 589 749 507 881 
notice 576 494 599 559 746 seafood 632 594 680 509 816 
parade 599 571 666 493 793 serenade 687 640 877 669 958 
paragraph 643 644 749 563 797 shoelace 658 715 790 654 816 
pepper 547 546 631 521 751 shrapnel 673 708 903 724 789 
poem 568 573 665 535 796 soccer 643 592 725 498 906 
prayer 568 575 708 477 914 spout 686 669 917 568 960 
rubber 528 503 596 492 822 stilts 731 702 940 793 850 
symphony 651 635 759 559 787 stretcher 648 679 825 582 968 
universe 553 546 625 581 861 vaccine 644 682 722 552 940 
ambition 632 620 632 604 723 chess 601 658 644 522 699 
ballet 645 627 734 524 922 crate 619 612 722 572 688 
bath 546 570 605 440 708 drizzle 591 619 673 584 794 
canoe 639 666 707 569 761 gadget 640 615 603 602 740 
consonant 869 750 975 652 804 gymnasium 721 687 713 605 783 
core 606 612 676 547 719 ion 718 691 975 704 779 
cottage 608 590 605 488 664 lacquer 720 703 784 627 755 
dairy 634 593 656 481 892 ledger 575 566 688 566 811 
deck 562 546 581 514 712 limousine 618 643 626 610 750 
dirt 560 585 632 511 635 linoleum 871 753 786 657 773 
door 548 536 559 431 695 mailbox 545 529 565 537 710 
edge 585 528 550 493 765 manual 558 621 632 507 817 
expense 643 611 740 591 709 nudge 544 538 614 619 821 
flame 627 604 649 539 782 oatmeal 621 640 724 573 744 
height 559 620 646 521 801 option 646 543 592 525 777 
hut 590 585 685 485 727 paddock 710 637 697 521 854 
laugh 541 495 564 488 821 parasol 738 710 817 699 843 
library 541 561 623 497 699 pendant 695 689 745 580 838 
noise 528 510 541 464 769 plagiarism 794 722 834 715 852 
ocean 557 552 575 525 708 pothole 776 682 732 715 752 
pillow 580 585 600 528 659 proton 687 671 817 776 841 
powder 614 610 625 539 709 resin 675 598 860 726 802 
stove 638 652 676 511 784 retina 606 639 667 559 722 
syllable 750 694 737 586 704 shuffle 668 602 678 572 773 
wedding 531 569 581 483 712 smallpox 767 623 754 561 850 
arch 598 597 659 539 710 bagpipe 618 626 740 634 813 
battle 522 564 635 537 652 beacon 586 568 686 639 840 
bottle 549 545 561 463 660 dinghy 687 690 775 755 753 
cave 589 573 692 582 610 easel 603 543 890 544 902 
church 578 597 673 509 625 itch 522 532 636 646 737 
cloud 571 560 686 503 713 keg 600 616 805 635 721 
colony 629 630 680 526 918 latch 511 544 683 598 637 
contract 578 641 694 561 747 lipstick 547 557 656 546 681 
diamond 562 581 623 492 700 lottery 545 543 666 567 732 
dish 554 530 621 460 646 mausoleum 812 910 792 673 941 
fork 575 566 681 505 705 milestone 575 661 706 641 677 
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garden 603 542 611 507 624 onslaught 642 627 785 733 782 
item 514 529 615 495 637 overtime 574 557 669 516 650 
jungle 572 562 629 482 690 parachute 619 630 742 559 868 
literature 571 645 653 601 676 pinball 591 618 673 529 670 
lodge 512 595 578 613 661 quill 645 658 800 731 755 
nerve 481 506 566 498 834 roster 573 571 858 700 1053 
odour 579 621 725 583 715 sausage 627 623 713 513 802 
pistol 505 565 627 541 744 silicon 681 725 802 612 744 
pitch 538 543 661 530 641 simile 677 808 916 668 957 
plastic 559 609 686 560 676 sonata 721 692 825 739 821 
restaurant 543 560 638 499 668 syringe 701 674 772 590 706 
ship 585 588 672 467 665 trinket 621 627 805 813 713 
television 586 583 635 509 675 wig 536 522 679 574 814 
temple 545 564 712 543 647 zenith 617 648 730 808 855 
argument 606 603 681 548 752 asylum 704 684 821 660 757 
art 536 526 597 537 696 bib 598 585 808 642 759 
cane 604 581 671 501 769 coupon 619 650 767 694 709 
cent 618 660 719 730 625 currant 644 665 775 623 849 
chapel 634 659 701 569 703 dent 536 535 739 663 799 
cheese 599 587 624 547 816 gutter 558 551 648 605 692 
concert 601 633 673 537 783 icicle 709 797 789 665 755 
creek 628 592 685 564 560 knuckle 598 603 669 630 727 
depth 563 531 641 553 660 lint 559 536 676 548 725 
disease 584 540 615 592 747 monsoon 722 657 788 700 822 
entrance 594 573 648 639 707 narcotic 713 644 870 707 788 
estate 674 610 665 524 671 octave 640 593 727 614 869 
fund 598 609 713 610 666 payday 729 658 875 674 872 
golf 512 507 577 519 772 peg 541 549 628 581 694 
harbour 605 603 636 583 707 picket 596 574 799 625 762 
idea 519 550 604 599 727 pizza 624 607 641 547 731 
length 533 524 599 578 678 plywood 744 618 777 650 823 
magnet 553 560 609 538 777 porridge 623 620 700 573 743 
mercury 609 594 662 572 729 rostrum 736 553 636 666 823 
moisture 578 585 609 597 866 scrapbook 773 705 813 638 680 
passion 598 648 670 539 741 shotgun 627 581 734 567 722 
pocket 556 573 625 575 703 shredder 664 658 854 649 837 
salad 571 621 631 608 669 shutter 681 625 754 571 778 
science 659 611 707 495 798 tripod 678 633 713 582 813 
Statue 702 660 790 615 763 varnish 611 619 707 613 776 
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Tables 

 
Table 1. Correlations between average mean item RT in each task and measures of word 

frequency and letter length (values greater than .195 are significant at the .05 level). 

 

 

 WNAM W/NWNAM LEXNAM LDT SEMCAT WORD 

FREQ 

LOG 

FREQ 

LENGTH 

WNAM 1 .657 .694 .495 .348 -.281 -.395 .327 

W/NWNAM  1 .652 .497 .301 -.278 -.399 .358 

LEXNAM   1 .636 .485 -.364 -.485 .187 

LDT    1 .417 -.385 -.547 .153 

SEMCAT     1 -.313 -.375 .075 

WORDFREQ      1 .752 -.223 

LOGFREQ       1 -.246 

LENGTH        1 
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Table 2. Results of simultaneous regression analyses predicting mean item RT for each 

task from measures of phonetic features of the onset phoneme, word frequency, stimulus 

regularity and letter length. The summary data for each task include the overall R2 for the 

complete predictor set, the β weight for each predictor variable, and the change in R2 

(∆R2) resulting from removing the set of phonetic predictors (Phonetic Total) and each of 

the other individual predictors from the regression equation (for all measures *= p<.05, 

** p<.01, *** p<.001). 

  

 WNAM W/NWNAM LEXNAM LDT SEMCAT 

PREDICTOR β ∆R2  β ∆R2 β ∆R2 β ∆R2 β ∆R2 

   Voicing -4.9  -4.6  -17.5  11.4  -2.7  

   Nasal -26.9  -28.2  -40.5  5.1  24.2  

   Fricative 52.5  54.1  66.8  3.7  19.0  

   Liquid -33.9  -35.6  -37.5  -3.5  5.4  

   Affricate 29.9  63.9  -12.7  -7.2  2.6  

   Bilabial 1.9  2.8  -4.1  -17.8  9.5  

   Labio- 

   dental 

-38.1  -34.2  -62.7  -28.6  -14.2  

   Palatal -31.2  -47.4  -16.8  -14.2  -13.3  

   Velar 12.3  15.4  26.2  -15.9  -0.3  

   Glottal 2.2  -7.3  -18.4  -24.1  -11.2  
Phonetic 
Total  .122***  .156***  .131***  .017  .001 

Regularity 8.7 .017 6.7 .011 6.9 .007 1.9 .001 3.5 .000 

Length 9.2 .045 10.3 .061*** 1.9 .001 0.63 .000 -1.7 .001 

Log Freq. -15.4 .122*** -14.6 .120*** -25.8 .220*** -24.7 .271*** -23.1 .129*** 

R2 .349*** .396*** .376*** .317* .154 
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Table 3. Estimates of RT mean and variance, parameters of the best-fitting ex-

Gaussian distribution (all ms units, except variance, ms2), and percent error (misses and 

wrong responses) for each condition (HF = High Frequency, LF = Low Frequency, A = 

Animate, I = Inanimate) of the five tasks of Experiment 1. 

Task Measure HF-A HF-I LF-A LF-I Overall 
Mean 569 569 610 629 595 
Variance 8456 8387 11723 15595 11040 
Mu 499 494 518 526 509 
Sigma 38.7 34.2 39.2 47.2 39.8 
Tau 71.1 76.1 91.9 104.1 85.8 
Miss 0.0 0.1 0.2 0.3 0.1 

 
 
 
WNAM 
 

Wrong 0.8 0.7 2.1 2.9 1.6 
Mean 583 584 622 635 606 
Variance 10006 10133 14368 15331 12460 
Mu 509 505 528 538 520 
Sigma 43.5 39.4 43.2 54.2 45.1 
Tau 74.8 79.1 94.2 96.7 86.2 
Miss 0.0 0.2 0.0 0.2 0.1 

 
 
 
W/NWNAM 
 

Wrong 0.7 0.8 2.1 2.9 1.7 
Mean 642 650 714 749 680 
Variance 11960 13438 20651 25774 17956 
Mu 554 554 585 604 574 
Sigma 47.9 50.1 52.5 55.9 51.6 
Tau 87.4 95.8 128.1 145.7 114.2 
Miss 0.3 0.6 6.0 7.3 3.5 

 
 
 
LEXNAM 

Wrong 0.4 0.6 0.8 1.1 0.7 
Mean 518 535 590 620 566 
Variance 12742 14798 24522 29096 20290 
Mu 425.7 424.7 449.9 464.8 441.3 
Sigma 45.2 36.8 42.7 50.8 43.9 
Tau 91.8 110.1 140.7 154.8 124.3 
Miss 0.2 0.1 0.3 0.1 0.1 

 
 
 
LDT 

Wrong 2.2 1.9 7.6 9.4 5.3 
Mean 642 748 726 804 730 
Variance 24505 28204 30398 34020 29282 
Mu 502 596 557 632 572 
Sigma 48.7 58.4 55.5 68.8 57.8 
Tau 140.6 152.0 168.8 172.2 158.4 
Miss 1.4 3.5 3.1 3.5 2.9 

 
 
 
SEMCAT 

Wrong 4.1 7.5 10.6 6.4 7.2 
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Table 4. Effect magnitudes and results of inferential testing for the NAM and 

W/NWNAM tasks (for all effects except the grand mean, * = .1 > p ≥ .05, ** = .05 > p ≥ 

.01, *** = p < .01). Effects are, Grand Mean, G, Task, T = W/NWNAM – WNAM, 

Frequency, F = Low – High Frequency, and Animacy, A = Inanimate – Animate. Units 

are ms, except Wrong, which are percentages. 

 

Effect Mean Variance µ σ τ Wrong 

G 600.2 11750 514.3 42.5 86.0 1.63 

T 11.3 1419 11.0 *5.3 0.4 0.04 

T x F -5.3 -458 0.5 0.5 -5.9 0.01 

T x A -2.5 -1357 2.3 1.7 -5.2 0.13 

T x F x A -7.4 -3105 1.5 2.6 -9.0 -0.31 

F ***47.7 ***5009 ***26.0 7.0 ***21.5 ***1.76 

A ***8.3 **1223 2.0 2.6 6.0 *0.41 

F x A ***15.7 2389 *13.9 *13.8 2.7 *0.85 
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Table 5. Treatment effects and results of inferential testing for the LDT and 

LEXNAM tasks (for all effects except the grand mean, * = .1 > p ≥ .05, ** = .05 > p ≥ 

.01, *** = p < .01). Effects are, Grand Mean, G, Task, T = LEXNAM – LDT, Frequency, 

F = Low – High Frequency, and Animacy, A = Inanimate – Animate. Units are ms, 

except for Total Errors, which are percentages. 

 

Effect Mean Variance µ σ τ Total 

Error 

G 627.2 19123 507.8 47.7 119.3 4.85 

T ***123.1 -2334 ***133.0 7.7 -10.1 *-1.17 

T x F 6.7 -2526 8.0 -0.5 -1.5 0.20 

T x A -1.8 -15 2.0 3.0 -3.2 0.34 

T x F x A 14.8 1127 2.5 -15.3 13.4 -0.87 

F ***82.1 ***11776 ***36.2 5.5 ***46.0 ***6.59 

A ***22.6 ***3308 8.0 1.3 **14.6 **0.82 

F x A ***20.2 *3082 *17.2 8.8 2.5 **1.40 
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Table 6. Treatment effects and results of inferential testing for the SEMCAT task 

(for all effects except the grand mean, * = .1 > p ≥ .05, ** = .05 > p ≥ .01, *** = p < .01). 

Effects are, Grand Mean, G, Frequency, F = Low – High Frequency, and Animacy, A = 

Inanimate – Animate. Units are ms except for Total Errors which are percentages. 

 

Effect Mean Variance µ σ τ  Total 

Errors 

G 729.7 29282 571.5 57.8 158.4 10.04 

F ***69.4 ***5855 ***45.1 **8.6 ***24.2 ***3.59 

A ***92.0 **3660 ***84.7 **11.5 7.4 0.90 

F x A ***-27.3 -77 *-19.4 3.6 -8.0 ***-9.36 
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Table 7. Task effects (T) and their interactions with animacy (A) and frequency (F) effects for 
the 10 possible pairwise comparisons of the five tasks. Results of inferential tests are reported 
as: * = .1 > p ≥ .05, ** = .05 > p ≥ .01, *** = p < .01. Task effects are scored as the first task 
in the comparison minus the second task eg. T (W/NWNAM vs. WNAM) = W/NWNAM – 
WNAM.  

Pair Effect Mean Variance µ σ τ % Miss % Wrong
T 11.3 1420 10.9 *6.5 0.2 - 0.04
T×F -5.5 -457 0.5 0.4 -6.2 - 0.01
T×A -2.5 -1357 2.3 1.1 -4.8 - 0.13

W/NWNAM 
vs.  

WNAM 
T×F×A -7.4 -3105 1.6 2.7 -9.0 - -0.31
T ***83.0 ***5496 ***54.5 5.1 ***28.3 - ***-0.93
T×F ***40.4 ***5734 **13.9 -2.1 ***27.4 - ***-1.31
T×A ***14.6 *2755 5.9 -0.2 9.2 - -0.24

LEXNAM 
vs.  

W/NWNAM 
T×F×A *15.5 2809 3.6 -14.1 10.9 - -0.66
T ***94.3 ***6916 ***65.4 ***11.6 ***28.5 - ***-0.89
T×F ***34.9 ***5277 **14.4 -1.7 ***21.2 - ***-1.29
T×A ***12.1 1398 *8.1 0.9 4.4 - -0.10

LEXNAM   
vs.   

WNAM 
T×F×A 8.1 -296 5.2 -11.4 1.9 - -0.97
T ***40.1 ***-7830 ***78.5 2.7 ***-38.2 - ***-3.63
T×F ***-33.7 ***-8259 -5.8 1.7 ***-28.7 - ***-4.70
T×A ***-16.4 -2770 -3.8 3.3 **-13.1 - -0.31

W/NWNAM 
vs.  

LDT 
T×F×A -0.8 -1682 -1.0 -1.3 2.4 - -1.30
T *28.8 ***-9250 ***67.7 -3.8 ***-38.4 - ***-3.67
T×F ***-28.2 ***-7802 -6.3 1.3 ***-22.5 - ***-4.71
T×A ***-13.9 -1413 -6.0 2.2 -8.3 - -0.44

WNAM     
vs.   

LDT 
T×F×A 6.6 1423 -2.6 -3.9 11.4 - -0.99
T ***123.1 -2334 ***133.1 **7.8 *-9.9 ***3.39 ***-4.56
T×F 6.7 -2525 8.1 -0.4 -1.3 ***6.20 ***-6.00
T×A -1.8 -15 2.1 3.1 -3.9 0.88 -0.54

LEXNAM 
vs.  

LDT 
T×F×A 14.7 1127 2.6 *-15.3 13.3 1.09 -1.96
T ***123.9 ***16822 ***51.7 ***11.3 ***72.7 - ***5.52
T×F ***24.3 1074 ***18.8 1.5 5.6 - 0.96
T×A ***84.9 *3115 ***81.6 *8.6 3.4 - -0.88

SEMCAT  
vs.    

NWNAM 
T×F×A ***-39.4 -913 **-34.2 -11.6 -6.2 - ***-8.32
T ***135.2 ***18242 ***62.6 ***17.8 ***72.9 - ***5.56
T×F ***18.8 617 ***19.3 1.9 -0.6 - 0.98
T×A ***82.4 1758 ***83.8 **9.7 -1.4 - -0.75

SEMCAT  
vs.    

WNAM 
T×F×A ***-46.8 -4018 **-32.6 -8.9 -15.2 - ***-8.63
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T **40.9 ***11326 -2.7 *6.2 ***44.4 -0.67 ***6.46
T×F **-16.1 **-4660 4.9 3.6 ***-21.8 ***-5.37 ***2.27
T×A ***70.3 360 ***75.7 8.8 -5.8 0.55 -0.64

SEMCAT  
vs.  

LEXNAM 
T×F×A ***-54.9 -3722 **-37.8 2.5 -17.1 **-2.67 ***-7.67
T ***164.0 ***8992 ***130.2 ***14.0 ***34.5 ***2.72 ***1.89
T×F -9.4 ***-7185 **13.0 3.2 ***-23.1 0.83 ***-3.73
T×A ***68.5 345 ***78.8 **11.9 -9.7 **1.44 -1.19

SEMCAT  
vs.  

LDT 
T×F×A ***-40.2 -2595 **-35.2 -12.8 -3.8 **-1.58 ***-9.62
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Table 8. Estimates of RT mean and variance, parameters of the best-fitting ex-

Gaussian distribution for the Delayed Naming task of Experiment 2 (all ms units, except 

variance, ms2), and percent error (misses and wrong responses) for each condition (HF = 

High Frequency, LF = Low Frequency, A = Animate, I = Inanimate) of Experiment 2. 

 

Measure HF-A HF-I LF-A LF-I Overall 

Mean 400 389 402 396 397 

Variance 11765 9155 14729 11708 11839 

Mu 310 311 307 314 312 

Sigma 40.3 47.2 40.9 48.6 44.3 

Tau 90.7 72.4 95.6 82.1 85.2 

Miss 1.1 1.5 1.1 1.4 1.3 

Wrong 1.4 0.5 2.4 3.9 2.0 
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Table 9. Treatment effects and results of inferential testing for Delayed Naming task 

of Experiment 2 (for all effects except the grand mean, * = .1 > p ≥ .05, ** = .05 > p ≥ 

.01, *** = p < .01). Effects are, Grand Mean, G, Frequency, F = Low – High Frequency, 

and Animacy, A = Inanimate – Animate. Units are ms except for Total Errors, which are 

percentages. 

 

Effect Mean Variance µ σ τ Total 

Error 

G 396.7 11839 311.7 44.3 85.2 3.31 

F -4.0 -2758 3.1 -1.0 -7.3 **-2.08 

A **-8.9 -2815 7.1 *7.3 ***-15.9 0.63 

F x A 4.9 -411 0.7 0.9 4.7 2.26 
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Figure Captions 

Figure 1. Subject average vincentiles (� symbols = animate, � symbols = 

inanimate) with standard error bars and fitted ex-Gaussian vincentiles (solid lines = 

animate, dotted lines = Inanimate) for (a) WNAM, (b) W/NWNAM, (c) LEXNAM, (d) 

LDT, (e) all subjects in SEMCAT, and (f) subjects in SEMCAT with < 3% misses. 

Labels indicate high frequency animate (HF-A) and inanimate (HF-I) and low frequency 

animate (LF-A) and inanimate (LF-I) conditions. 

Figure 2.  Plots of pairs of measures averaged over subjects: (a) Mean RT against 

RT Variance, (b) ex-Gaussian parameters µ against τ, and (c) Mean RT against total 

percent error (misses plus wrong responses). Data from different tasks are indicated by 

labels and by a different symbol for each task (+: WNAM, ×: W/NWNAM, �: 

LEXNAM, �: LDT, and �: SEMCAT). Lines show frequency effects, joining results for 

low frequency words (always at the left end of the line) and high frequency words 

(always at the right end of the line) of the same type (solid lines for inanimate words, 

dotted lines for animate words). 

Figure 3. Vincentile values for frequency and animacy main effects and their 

interaction as a function of vincentile number for (a) the WNAM task and (b) the 

W/NWNAM Task. 

Figure 4. Vincentile values for frequency and animacy main effects and their 

interaction as a function of vincentile number for (a) the LEXNAM task and (b) the LDT. 

Figure 5. Vincentile values for frequency and animacy main effects and their 

interaction as a function of vincentile number for the SEMCAT task. 

Figure 6. Subject average vincentiles (� symbols = animate, � symbols = 

inanimate) with standard error bars and fitted ex-Gaussian vincentiles (solid lines = 

animate, dotted lines = Inanimate) for the DELNAM task. 
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Footnotes 

                                                 
1 Words with 6 or more letters have few neighbors (average N < 1; Andrews, 1997) so only short LF words have the 

potential to generate high summed lexical activity and to yield fast “word” responses. 
2 The first two cumulants are the mean (κ1) and variance (κ2), the first absolute moment and the second central moment 

respectively, and the third cumulant is the third central moment (κ3). The third cumulant estimates the asymmetry or skew 

of the distribution. It equals zero when the distribution is symmetric (eg. a normal distribution), is negative when the 

distribution has a tail to the left, and is positive when the distribution has a tail to the right (eg. the exponential 

distribution). It is important to distinguish between theoretical cumulants with respect to a particular probability 

distribution, p(x), (eg. ( )dxxxp=1κ , ( ) ( )dxxpx −= 2
12 κκ , and ( ) ( )dxxpx

3

13 −= κκ ) and the formula 

usually applied to estimate them from a sample, xi, i = 1..n (ie. nxi=1κ̂ , ( ) ( )1ˆˆ 2
12 −−= nxi κκ , and 

( ) ( )1ˆˆ 3
13 −−= nxi κκ ).  The sample formulae replace integration in the theoretical formulae with summation over 

the sample, allowing the frequencies of observed values to estimate the underlying probability distribution without 

assuming its form. It is the estimates from the sample formulae for higher cumulants such as skew that are neither robust 

nor efficient. 
3 We have adopted the term “vincentile” rather than the term quantile adopted by Ratcliff (1979) because a quantile is a 

value below which a given proportion of the distribution occurs, whereas a vincentile is the average of values between 

pairs of quantiles. Ratcliff’s (1979, p. 449) algorithm for calculating vincentiles clearly illustrates this point. For an ordered 

sample of n observations write out a new list with each value repeated v times. The averages of each successive set of n values in the new list 

are the v vincentiles. Estimates of vincentiles and quantiles tend to be the same as the number of vincentiles approaches the 

sample size. In particular, quantile and vincentile estimates are identical when each interval between quantile estimates 

contains only one observation. Linearly interpolated quantile estimates and vincentile estimates are identical when each 

interval contains at most two different observations (Ratcliff, 1979, p. 449, provides an example). When intervals contain 

more than two different observations, however, quantile and vincentile estimates may differ.  
4 Ratcliff (1979) proved that average quantiles provide exact average parameter estimates for the exponential and Weibull 

distributions. An exact result was not available for the average of ex-Gaussian quantiles, so Ratcliff provides a numerical 

demonstration. The number of vincentiles used in the demonstration was much smaller than the individual sample sizes, so 

vincentiles and quantiles were likely quite different. Since we are interested in estimating the ex-Gaussian, we also used 

average vincentiles, because Ratcliff’s demonstration only bears on average vincentiles not average quantiles. However, 

we chose the number of vincentiles to be as large as possible given our sample sizes so vincentile and quantile estimates 

were similar. 

5 Note that additive factors logic dictates that effects on separate processing stages result in lack of interaction only for 

cumulants, not the ex-Gaussian parameters, or non-linear transformations of cumulants (eg. standard deviation or τ). 

Consequently, a lack of interaction in µ, σ, and τ does not necessarily support influences on separate stages. However, 
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when we measured τ from Plourde and Besner’s graph and calculated the third cumulant (2τ3) the effects of frequency and 

stimulus quality still appeared additive.  
6 We are grateful to Ken and Jonathan Forster at the University of Arizona for their continued development and 

maintenance of this application.  

7 The regularity rating was made on a 4-point scale ranging from 1 (completely regular) to 4 (completely irregular) by S. 

A. 
8 Given the difference between the average length of high and low frequency words, it is possible that variance attributed 

to frequency is actually due to length (David Balota, personal communication). To address this possibility, a second set of 

regression analyses were conducted on the residual RTs for each item after length was partialled out. The estimates of the 

unique contribution of log frequency to naming and LDT performance (.136 and .261 respectively) are very similar to the 

raw RT analyses reported in Table 3.  
9 Ex-Gaussian vincentiles were determined by calculating the mean of the fitted ex-Gaussian distribution between pairs of 

quantiles via numerical integration. The values of each quantile were determined by line search on the numerical integral 

of the fitted ex-Gaussian. 
10 This tendency to overestimate the slowest vincentile contrasts with Ratcliff ‘s (1979) finding that the ex-Gaussian 

distribution tends to underestimate the right tail of RT distribution (e.g., Figure 4, p.455). However, Ratcliff’s finding may 

be an artifact of the identification of vincentiles with quantiles. Plots calculated as in Figure 1 exactly fit simulated ex-

Gaussian data whereas plots based on identifying vincentiles with quantiles display apparent underestimation in the right 

tail of simulated ex-Gaussian data. It was through constructing such plots that we realized that vincentiles and quantile 

values can differ appreciably in some circumstances. 
11 A parallel analysis of the LDT data removed only 5 participants and did not affect the fit of the data. 
12 Although each subject participated in all five tasks, the manner in which the data were stored, combined with the 

crossing of lists with tasks, made it difficult to use task as a repeated measures’ variate. This reduces the power of the 

analysis of task effects but should not otherwise affect the pattern of obtained results.  Mean RT, RT variance and percent 

error were calculated for each combination of subject, task and word type and tested by ANOVA. Parallel analyses were 

conducted on mean RT using items rather than subjects as the unit of analysis (Clark, 1973). All effects that were 

significant in the subjects-based analyses were also significant by items. 
13 For each task, 1050 data sets were constructed by randomly sampling 74 subject’s data (75 for LEXNAM) with 

replacement from the original set of subjects for each task. Vincent averages were calculated for each resampled set of 

subjects and fit with the ex-Gaussian distribution. For effects over purely within subject factors, significance was 

determined by counting the number of resampled sets in which the effect magnitudes was less than zero (or greater than 

zero if the original effect was negative).  The count was divided by 1050 to determine the estimated significance level (α). 

Tests involving a between subjects effect were performed using t-tests based on standard errors estimated from the 
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standard deviations of the resampled ex-Gaussian parameter distributions. Two tailed significance tests at the 0.05 level 

were used in all cases. 
14 Average error rates were higher in the three tasks requiring a decision (LDT, LEXNAM and SEMCAT) than in the 

naming tasks. Tasks with higher error rates might be argued to lead to a less accurate estimate of τ because they fail to 

reflect RT for items that are wrongly classified. Such items are presumably likely to be more difficult and would therefore 

lead to relatively slow responses if the response was correct. The RT distributions for tasks with high error rates might 

therefore underestimate τ. However, this problem does not confound the present cross-task comparisons because the tasks 

with higher error rates also produced larger τ estimates (see Figure 2). The elimination of 5- 10% of slower responses from 

the three decision tasks compared to about 2% of naming responses may mean that the τ differences between tasks are 

slightly underestimated, but would not change the overall pattern of cross-task differences in τ.  

 
15 The single exception was HF inanimate words in LEXNAM, for which correct and error responses were of equivalent 

speed (658 ms and 660 ms respectively) but since the error rate was only 0.6% this estimate is unreliable. 


