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Empirical time series in the life sciences are often non-stationary and have small signal-

to-noise ratios, making it difficult to accurately detect and characterize dynamical 

structure. The usual response to high noise is averaging, but time domain averaging is 

inappropriate, especially when the dynamics are nonlinear. We review alternative delay-

space averaging methods based on the topology and short-term predictability of nonlinear 

dynamics and illustrate their application using the TISEAN software (Hegger, Kantz & 

Schreiber, 1999). The methods were applied to a Lorenz series, which resembles the 

dynamics found by Kelly, Heathcote, Heath and Longstaff (2001) in series of decision 

times. The Lorenz series was corrupted with up to 80% additive Gaussian noise, a lower 

signal-to-noise ratio than has been used in any previous test of these methods, but 

consistent with Kelly et al.’s data. Prediction methods performed the best for detecting 

nonstationarity and nonlinear dynamics, and optimal predictability provided an objective 

criterion for setting the parameters required by the analyses. Local linear filtering 

methods preformed best for characterization, producing informative plots that revealed 

the nature of the underlying dynamics. These results suggest that a methodology based on 

delay-space averaging and prediction could be useful with noisy empirical data series. 

 

Keywords: Nonlinear Dynamics, Fractal Dimension, Prediction, Time Series, 

Measurement Noise 
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The study of mathematical chaos has provided useful new techniques for the 

analysis of time series (e.g., Hegger, Kantz & Schreiber, 1999) and a framework for 

models of complex behavioural processes (e.g., Gregson, 1988, 1992, 1995; Guastello, 

1995; Heath, 2000; Kelso, 1995; Newell, Liu & Mayer-Kress, 2001). However, most of 

these techniques were developed for the physical sciences where the underlying 

determining equations are usually known and measurement noise can be minimised. In 

the behavioural sciences, in contrast, determining equations are rarely known, and it is 

difficult to eliminate measurement noise because measured systems cannot be sufficiently 

isolated to remove the effects of influential environmental variables.  

This paper addresses the application of nonlinear dynamical analysis (NDA) 

techniques to behavioural data with particular reference to the problem of measurement 

noise. The usual response to noise in the behavioural sciences is averaging. However, 

when behaviour is nonlinear, inappropriate averaging can introduce distortion so that the 

average is not representative of any individual’s behaviour (e.g., Brown & Heathcote, 

2003; Heathcote & Brown, 2004; Heathcote, Brown & Mewhort, 2000). Once the 

necessity of studying the individual is accepted, one is faced with a daunting level of 

variability in behaviour. Gilden (1997), for example, found that changes in the mean 

accounted for only 10% of individual variance in a range of choice response time (RT) 

experiments. Discarding the remaining 90% of variation as “error” assumes that no 

systematic explanation is possible for the vast majority of individual behaviour. 

Nonlinear dynamics, which can generate complex and apparently random behaviour 

while obeying relatively simple deterministic equations, provides an alternative 

conceptualisation of behavioural variability. As Luce (1995) states: “… the findings of 
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the past 10 to 15 years about nonlinear dynamic systems call into question whether the 

actual source of the noise is randomness or ill-understood dynamics.” (p.24).  

However, it is unlikely that chaotic dynamics can explain all of the variability of 

individual behaviour. The research reported here was inspired by studies of sequential 

dependences in the times to make series of simple choices, which under the right 

conditions can show evidence for nonlinear dynamics (Kelly, Heathcote, Heath & 

Longstaff, 2001), but also clearly contained high levels of measurement noise. Where 

genuine noise is present, measurement of dynamics becomes problematic.  

Nonlinear Dynamics 

Figure.1a is an example of low-dimensional mathematical chaos, a time series 

from the Lorenz equations (see caption for details), which will be used to illustrate 

nonlinear dynamics throughout this paper. The Lorenz series was chosen because its 

dynamics resemble those observed by Kelly et al. (2001). The Lorenz series exhibits a 

pair of complex oscillatory states, with rapid transitions between these states occurring at 

apparently irregular intervals. Within each state, oscillations increase from small to large 

amplitudes before undergoing a state transition. The series in Fig.1a begins with a rapid 

state transition then spends a long time in the lower state, but later in the series the upper 

state has the majority of extended oscillations. The first major section of this paper 

reviews a range of NDA techniques and applies them to the Lorenz series. We then 

examine NDA for noisy series of the type that might be expected in behavioural data, by 

adding Gaussian noise to the series in Fig.1a.  

-------------------------------- 
Insert Figure 1 about here 

--------------------------------- 
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It should be emphasised from the outset that is difficult to provide a definitive 

step-by-step guide that covers NDA for all types of nonlinear dynamics. The very 

complexity that makes nonlinear dynamics attractive for modelling also means that 

caution is required in generalising findings about a particular type of chaotic series. 

Rather, the aim of this paper is to illustrate an investigative methodology that readers can 

adapt in order to ascertain if NDA will be useful with their own data, perhaps aided by 

analysis of model time series. The analysis software used here (with commands set in 

Courier) is available free through the TISEAN project (Version 2.1, 

http://www.mpipks-dresden.mpg.de/~tisean, see Hegger, Kantz & Schreiber, 1999). 

Methods for Dynamical Analysis 

Chaos can range from low dimensional to high dimensional. Although noise and 

high dimensional chaos are conceptually distinct, they are almost impossible to 

distinguish in practice. Low dimensional chaos can be distinguished from noise, but 

obtaining data of sufficient quality can be difficult. The time series must be long, sampled 

at regular time intervals, and stationary (stationarity is defined below). Initially, NDA 

techniques were developed for physical science applications that yielded such series. In 

the life sciences, however, long stationary series are difficult to obtain, due to processes 

such as learning and fatigue, and high levels of measurement noise are often present. 

Genuine noise, particularly linearly autocorrelated noise, is problematic as it can appear 

like chaos to some NDA techniques.  

The Fourier power spectrum of the series in Fig.1a illustrates why noise is 

problematic for NDA. Fourier analysis is a traditional approach to such apparently 

structured oscillatory signals, allowing for dominant frequencies to be identified through 

peaks in the spectrum, and broadband noise to be removed through band-pass filtering. 
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However chaotic signals can themselves be broadband, and so frequency domain filters 

are ineffective. Where noise is white (i.e., each sample is independent) the spectrum is 

flat. Coloured noises, such as are produced by linear and nonlinear autocorrelation 

produce spectra, are characterised by a decrease in power with increasing frequency. The 

Lorenz series also displays a decrease in power as frequency increases. The similarity of 

spectra for chaos and coloured noises makes them hard to distinguish.  

Whereas Fourier decomposition transforms temporal informa tion into frequency 

information, most NDA techniques rely on the transformation of temporal information 

into a geometrical representation: delay embedding.  An m dimensional delay embedding 

converts a one dimensional time series, x(t), to a set of m dimensional points (x(t+δ), 

x(t+2δ),…x(t+mδ)), where δ is the time delay between samples. Takens’ (1981) theorem 

states that a one to one image of the d dimensional set of points visited by a stationary 

dynamical system (its attractor) can be reconstructed from an embedding in a delay space 

with dimension m>2d. For the Lorenz system, for example, d≈2.05, with the attractor 

being a fractal subset of the space defined by the three Lorenz variables (i.e., (x,y,z) of 

which only x is shown in Fig.1a). The complex, fractal nature of this set for chaotic 

systems have led to them being described as “strange attractors”. Since Takens’ initial 

result, “embedology” has been an active area of theoretical development, with Sauer, 

Yorke and Casdagli (1991) showing that more general schemes than simple delay 

coordinates can be used, including delay embeddings of series transformed by singular 

value decomposition and geometric filtering (Grassberger, Hegger, Kantz, Schaffrath & 

Schreiber, 1993). 
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Stationarity is essential for establishing an embedding. For a stochastic process, 

y(t), stationarity can be defined as invariance of all finite-dimensional joint distribution 

functions of (y(t1),y(t2),…y(tm)) over shifts on the temporal dimension (e.g., (t1+∆…tm+∆)) 

(Rao & Gabr, 1984). In the context of NDA, Casdagli (1997, p. 12) stated that for 

practical purposes:  “…a time series x1, x2,…,xN is nonstationary if, for low m, there are 

variations in the estimated joint distribution of xi,xi+1,…,xi+m-1 that occur on time scales of 

order N”.  An embedded representation can only translate all temporal information to 

spatial information if the underlying process is stationary. Given stationarity, NDA can 

recover aspects of the dynamics using geometrical analyses of the embedded set. The 

analyses often involve estimating the properties of local neighbourhoods or sets of points, 

with a neighbourhood defined on a distance measure in the embedding space. Where such 

analyses aggregate local measures to estimate global properties of the attractor they 

strongly rely on the assumption of stationarity. Aggregation is particularly important to 

counter the effects of measurement noise.      

Even where stationarity holds, it should be acknowledged that a particular data 

series may not be suitable for NDA if all regions of the dynamics are not sampled, and 

hence the full joint distribution cannot be estimated. As in conventional statistics, one 

needs a sufficient number of replicates to form a reliable model, so intermittent chaos or 

noisy periodic behaviours cannot be characterized when few intermittent events or 

periods are sampled. In some circumstances, even arbitrarily small amounts of noise can 

destroy the embedding property (Casdagli, Eubank, Farmer & Gibson, 1991). However, 

delay coordinates are also useful when an embedding is not required, such as in the 

prediction of nonlinear time series with both deterministic and stochastic dynamical 
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structure (Weigend & Gershenfeld, 1993). As will be discussed later, NDA based on 

prediction is especially attractive because it remains useful when noise levels are high. 

Figure 2a illustrates the nonlinear dynamics of the Lorenz time series, by plotting 

each value against an estimate of its first derivative, obtained by successive (“lag one”) 

differences. The derivative plot shows that the series changes quickly near the centre of 

each oscillation state, and more slowly in the region between states, and at the positive 

and negative extremes. The spikes to the left and right of the main body of the plot are 

produced by very large changes, a large decrease for the positive state and three large 

increases for the negative state. The derivative plot also shows that the initial 2000 or so 

observations in the series have different dynamics to the remainder of the series. The 

series first exhibits an unusually large decrease then oscillates for an extended period 

around the centre of the lower state. The values of the series from t=2001-10000 will be 

used to illustrate the analysis of stationary dynamics, with the first 2000 observations 

used to illustrate the detection of nonstationarity. 

-------------------------------- 
Insert Figure 2 about here 

--------------------------------- 
Most NDA techniques are based on time delay coordinates, so they require the 

user to select a delay, embedding dimension, and often other parameters. Parameter 

selection is often difficult because the best choice depends both on the data set and the 

technique. A range of methods have been devised to select parameters for a given data 

set; however, the methods can also require parameter values to be selected. Further, both 

the dynamical analysis and parameter selection methods can fail when noise is present. In 

practice, NDA for empirical data is still as much an art as a science.   
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 The following sections survey a range of methods for performing linear and 

nonlinear dynamical analyses. The first section examines linear methods, which are a 

necessary preliminary to nonlinear analysis. The following section discusses measures of 

nonlinearity based on the ideas of recurrence and sensitive dependence. The final section 

discusses inferential testing for the presence of nonlinearity, and filtering methods that 

remove noise, enabling the graphical characterization of dynamical structure. 

Linear Dynamical Analysis 

Linear dynamical analyses can be accomplished using standard ARMA 

(AR=autoregressive, MA=moving average) modelling (Box & Jenkins, 1976; Cryer, 

1986). Linear autoregressive models create future values from linear combinations of past 

values and noise, producing linear autocorrelations between past and future observations. 

Most chaotic models have the same type of recursive dynamics, except that the 

combination also contains nonlinear components. As a result, chaos almost always 

produces strong linear autocorrelations. The best fitting linear autoregressive model for 

the series in Fig.1a, as determined by the number of significant partial autocorrelation 

coefficients, is of order 12 and accounts for more than 99% of the variation in the series. 

However, the residuals for this model are structured, as it does not account for all of the 

increasing magnitude of oscillations within a state, with four sets of large deviations 

corresponding to the large differences in Fig.2a. Fits requiring large numbers of 

parameters (e.g., 12 compared to the 3 parameters of the Lorenz equations), and failure to 

account for fine-grained structure, are characteristic of ARMA models of chaotic series.  

De-trending, through transformations such as taking successive differences or 

subtracting a regression estimate of the mean, is usually applied because ARMA analysis 

assumes second order or “weak” stationarity: constancy of the mean, variance and auto-
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covariance1. The Lorenz series also displays nonstationarity up to around 2000 

observations, evident in an increase in the local mean of the series (the thick line in 

Figure 1a). However, despite a broad averaging window of 1000 observations, the local 

mean continues to fluctuate appreciably throughout the series. These fluctuations do not 

reflect nonstationarity, but rather the underlying nonlinear dynamics, which spends 

varying amounts of time in the upper and lower states. Similar observations can be made 

about the local variance of the series, so in this case neither the local means nor variances 

are useful for detecting the initial nonstationarity.  

For the Lorenz series, the initial nonstationarity did not make much difference to 

the fitted AR model, but the autocorrelation function was somewhat shorter when the first 

2000 observations were omitted. The length of an autocorrelation function is often 

characterised by its first zero, or by the “correlation time”, the lag at which it drops to 1/e 

(≈0.378) of its initial value. Chaotic series can have very long autocorrelation functions. 

For the full series in Fig.1a autocorrelations up to lag of 500 did not cross zero and had a 

correlation time of 41. With the first 2000 values omitted the autocorrelation function 

crossed zero at lag 314 and had a correlation time of 31.  

De-trending must be applied cautiously as a preliminary to NDA. For example, 

subtracting the local mean averaged at the scale illustrated in Fig.1a would destroy 

information about the underlying dynamics. In particular, NDA should not be carried out 

on residuals from ARMA analysis (Theiler & Eubank, 1993). Chaotic dynamics often 

produce linear components, and ARMA models with a large number of parameters can fit 

some variation due to nonlinear components, so that residuals do not contain the 

information necessary for NDA. However, NDA does rely on comparisons with linear 
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models. Instead of examining residuals, an experimental series is compared to 

“surrogate” series, formed by randomising the experimental series while maintaining 

structure dictated by a null hypothesis, such as linear structure (Theiler, Eubank, Longtin, 

Galdrikian & Farmer, 1992), as described below.  

Nonlinear Methods based on Recurrence 

Graphical methods are particularly useful for revealing recurrent, or close to 

recurrent, structure in time series. A delay plot graphs a time series, x(t), against a 

delayed version of itself, x(t+δ), where δ is the delay. Periodic attractors display exact 

recurrence, returning to the same state or states at regular intervals. Hence, for 

appropriately chosen delay intervals, such systems can be represented by a single point or 

small set of points in a delay plot. Chaotic systems are not exactly recurrent because they 

contain many unstable periodic orbits, but delay plots can still reveal behaviour that is 

close to recurrent, and so they are useful for understanding the qualitative dynamics of a 

chaotic system.  

Note that delay plots and derivative plots (e.g., Fig.2) contain the same 

information. For example, the lag-one derivative estimate for a point in a lag-one delay 

plot equals the difference between vertical and horizontal distances from the right 

diagonal. The derivative plot has the advantage of a direct interpretation in terms of 

process dynamics, and can be extended using estimates of higher order derivatives. 

However, estimates of higher order derivatives can be very variable when noise is 

present, so attention is restricted here to the first derivative.  

Figure 2 shows that an appropriately chosen delay provides a clear representation 

of temporal structure in derivative plots. When the delay is short (e.g., Fig.2a) orbits are 

too closely packed to be discriminable, whereas when the delay is too long, details may 
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be lost in some regions. In general, no single delay necessarily provides the best detail of 

all regions of the dynamics (cf. Hegger’s et al., 1999, Fig.1). The embedding theorem 

should apply for any delay, but most NDA techniques require specification of an 

appropriate delay in order to avoid the redundancy evident in Fig.2a. Series of derivative 

or delay plots can be used to choose the delay producing the clearest structure. For the 

Lorenz data, a delay of 12 provided the best result, agreeing with the order of the AR 

model for this time series.  

Methods of choosing delay based on autocorrelation, such as the correlation time 

or the first zero of the autocorrelation function, are sometimes recommended. However, 

these estimates, given earlier, were not useful for the Lorenz series. Time delayed mutual 

information (i.e., the information shared by lagged versions of a time series) is also useful 

for estimating delay (Fraser & Swinney, 1986). Mutual information accounts for both 

linear and nonlinear structure, with the delay being set to its first minimum as a function 

of lag. For the stationary Lorenz series, the resulting estimate was 17 (mutual 

lorenz2.dat –D100 –o provides mutual information to 100 lags), somewhat 

longer than the linear estimate of 12, reflecting the longer time scale of the nonlinear 

interactions. For the following analyses of the deterministic Lorenz series little difference 

was observed for delays ranging from 12 to 17.  

Recurrence plots, which were originally proposed by Eckmann, Oliffson-

Kamphorst and Ruelle (1987), provide an alternative means of graphical analysis. They 

are constructed by plotting points (on a grid defined by two time axes) where recurrence 

nearly occurs in an m dimensional embedding. Recurrence was originally defined as 

being a k-th nearest neighbour, but a definition based on a minimum distance is more 
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often used (Koebbe & Mayer-Kress, 1991). The TISEAN command recurr produces 

an output file that can be used to create a recurrence plot of the latter type. Recurrence 

plots produce visual patterns that may be useful in detecting nonstationarity, but general 

guidelines for how to interpret the patterns are difficult to formulate (cf. Schreiber, 

1999)2.   

Dimensionality estimates provide quantitative indices of nonlinear dynamics 

based on topological regularities such as near recurrence. According to Takens’ (1981) 

theorem, the minimum dimension guaranteed to establish an embedding is given by the 

smallest integer m>2d, where d is the possibly fractional dimension of the attractor that 

generated the time series.  Simple periodic attractors have a dimension of one, and quasi-

periodic attractors, such as tori, have higher integer dimensions. Chaotic dynamics have 

attractors with non- integer dimensions, because they fill the phase space in a fractal 

manner with an invariant distribution of points on the attractor at different length scales.  

The Lorenz equations operate in a 3 dimensional space, but the Lorenz attractor 

has dimension, d≈2.05.  A value of m=5 will be adopted here for the further analysis of 

the Lorenz data, in accord with Takens ’ theorem. Note, however, that Takens’ theorem 

does not dictate that smaller values of m will not work. For the Lorenz system, for 

example, m=3 can be sufficient to achieve an embedding. Heath (2000) favours the False 

Nearest Neighbour method (Kennel, Brown & Abarbanel, 1992) to determine a minimum 

embedding dimension. Estimation of a minimum embedding dimension will be discussed 

once some background information has been established. 

A number of different attractor dimensionality estimates are available, based on 

either the correlation sum or information theory measures. For example, dimensionality 
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may be estimated using D1, the information dimension, and the dynamics of two series 

may be compared using Kullback entropy (see Schreiber, 1999). We will examine the 

most commonly used estimate of dimensionality, D2. D2 is based on the correlation sum, 

C(ε), which measures the proportion of embedded points that fall within a given distance 

(ε) of each other (Grassberger & Procaccia, 1983). The correlation sum measures 

recurrence at a given distance or scale, so it is equivalent to the proportion of points 

marked as recurrent at a given distance on a recurrence plot.  

D2 summarises the way the correlation sum changes as a function of distance. It 

can be estimated from the exponent of a power law relationship between the correlation 

sum and distance.  The exponent is usually measured by the slope of a log(C(ε))-log(ε) 

plot. Because the power law relationship never applies for all distances in a finite series 

(technically the dimension of a finite series is zero), the slope is assessed locally, that is, 

it is assessed for a restricted range of distances. For chaotic systems the slope increases 

with m, but then becomes constant once a proper embedding is achieved. The constant 

slope provides the D2 estimate. White noise, in contrast, consists of a series of 

independent random values, so it fills the delay space uniformly no matter what its 

dimension, and produces increasing slope estimates.  

Early applications of NDA used finite D2 estimates as evidence for chaos. 

However, a finite D2 is a necessary but not sufficient condition for chaos. Coloured 

noises, which result from stochastic dependencies between series of values, also produce 

finite D2 estimates. Osborne and Provenzale (1989) showed that an embedded random 

walk has a dimension of two. Provenzale, Smith, Vio and Murante (1992) discuss these 

problems and provide examples of finite D2 estimates for both linear and nonlinear 
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autoregressive models. Theiler and Rapp (1996) concluded that much of the supposed 

evidence for chaos relying on finite estimated dimensionality suffered from these 

problems. Hence, D2 estimates may be best used as a method of characterising rather 

than identifying nonlinear dynamics.  

Even where nonlinear dynamics are present, measurement noise is particularly 

detrimental to D2 estimation, as it smears out the fine details of an attractor. As a result, 

accurate absolute dimensionality estimates are difficult to obtain. Relative measurements 

of dimensionality may, however, remain useful, as long as estimates are obtained with the 

same measurement function, y=f(x), where y is the observed time series, x is the series 

produced by the dynamics, and f is a monotone function. Under ideal circumstances D2 is 

invariant with respect to the measurement function, but when only relative measurements 

are possible it may not be invariant. Hence, comparisons may be confounded if the 

measurement functions differ. Similarly, changes in the level and type of measurement 

noise may change D2 estimates, and so confound comparisons. 

An important technical issue in D2 estimation, and other estimates based on the 

correlation sum, is that they assume that pairs of points are drawn randomly and 

independently according to the scale invariant measure of the attractor. Independence 

cannot apply for points occurring close in time, and if such points are included spuriously 

low estimates of D2 occur. To avoid the problem, points closer than some minimum time 

can be excluded from the correlation sum (Grassberger, 1987; Theiler, 1990). The 

number of points excluded, w, is called the Theiler window. An easy estimate of the 

Theiler window can be obtained by multiplying the correlation time by three (Heath, 
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2000). A more rigorous estimate is given by a space-time separation plot (Provenzale, et 

al., 1992).  

A space-time separation plot is related to the correlation sum and the recurrence 

plot. It shows equal probability contours for the distribution of distances between pairs of 

points as a function of time. For a chaotic series the contours initially rise then oscillate 

around a constant value, whereas for coloured noise they continue to rise. Figure 3 shows 

a space-time separation plot for the Lorenz data, which displays contours of constant 

probability for the spatial separation of pairs of points in an embedding as a function of 

their separation in time. The Theiler window, w, is chosen at a time beyond which the 

constant behaviour is operating. For the following analyses w was set at a value of 100, 

which approximately equals the estimate from three times the correlation time (3x31). 

Values in the range 50-300 were found to have a similar effect. 

-------------------------------- 
Insert Figure 3 about here 

--------------------------------- 
Figure 4 shows, for the stationary Lorenz series and a Theiler window of 100, 

local slope estimates of log(C(ε))~log(ε) as a function of log(ε) for 1-10 embedding 

dimensions. The slope in a “scaling region” (a range of distances with the same constant 

slope for all larger embedding dimensions) provides an estimate of dimensionality. The 

local slope plot is a useful alternative to directly estimating D2 for the slope of 

log(C(ε))~log(ε) plots because it makes evident the extent of, and deviations from, 

scaling behaviour. Dimensionality cannot be estimated unless scaling behaviour occurs; 

the TISEAN programmers emphasise this point so strongly that they purposely do not 

provide any automatic estimate of dimensionality, only outputs for constructing plots.  
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-------------------------------- 
Insert Figure 4 about here 
-------------------------------- 

In Fig.4a the scaling region is broad, because estimates were based on 98 000 

stationary points. Scaling is achieved by an embedding dimension of three, and the slope 

in the scaling region agrees closely with the true dimensionality. As the computation of 

D2 scales as the square of series length, it can be quite time consuming (e.g., the estimate 

for the 98000 length series took 3 hours on a 2.6GHz AMD Athlon XP computer).  In 

Fig.4b the scaling region is much narrower, as the estimates are based on only 8000 

stationary points, and was not achieved until an embedding dimension of 5. However, it 

is still clearly identifiable around a distance of 2 and only slightly overestimates the true 

dimensionality. 

Nonlinear Methods based on Sensitive Dependence 

An alternative approach to measures based on fractal topology comes from 

another defining characteristic of chaos: sensitive dependence on initial conditions. In 

chaotic systems initially similar points soon move far apart as trajectories diverge 

exponentially. Divergence occurs at a rate described by the Lyapunov spectrum. Globally 

stable chaotic systems (such as the Lorenz) are bounded overall, as the sum of their 

Lyapunov exponents is negative, but trajectories diverge in one or more dimensions at 

rates determined by the set of positive exponents. Methods are available to estimate the 

full Lyapunov spectrum (e.g., the Netle software, http://www.sfu.ca/~rgencay/lyap.html). 

However, Heath (2000) notes that these methods are not noise tolerant, and favours a 

more robust approach based on estimating only the maximum Lyapunov exponent, with a 

positive maximum exponent indicating chaos. We found that even this method fails in 

noisy series, so Lyapunov based methods are not further examined here. 
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The False Nearest Neighbour method (Kennel et al., 1992), which is used to 

determine a minimum embedding dimension, is also based on the idea of examining the 

divergence of neighbouring points. For a range of embedding dimensions, the distance in 

the future (usually just one step) between each data point and its nearest neighbour is 

compared. If the ratio of the distance after one step to the original distance exceeds a 

criterion, the point is declared a false neighbour. The process is repeated for a range of 

embedding dimensions and the percentage of false neighbours plotted. For example, the 

TISEAN command false_nearest lorenz2.dat -M10 -d17 -o -t100 

-f5 calculates the number of nearest neighbours with a ratio greater than 5 for 1-10 

dimensions. The result clearly indicates m=3 is sufficient, a result that holds for a wide 

range of criterion ratios. A Theiler window of 100 was specified, as the false nearest 

neighbour technique makes similar assumptions to the dimensionality estimation 

techniques.  A minimum embedding dimension can also be estimated from the D2 plots 

by the minimum number of dimensions necessary to attain a scaling region.  

Sugihara and May (1990) suggested that predictability could be used to measure 

nonlinear dynamics in a time series. Although deterministic chaotic series are predictable 

in the short term, small initial differences due to measurement error are rapidly magnified 

by sensitive dependence, so that the series cannot be predicted in the long term. White 

noise, in contrast, is not predictable on any time scale. Sugihara and May suggested that 

decreasing predictability with time provides evidence for chaos. However, as with other 

NDA measures, stochastic temporal dependencies (e.g., coloured spectra produced by 

linear and nonlinear AR models) can confound results as they also cause a gradual 

decrease in predictability.  
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To achieve prediction without knowledge of the underlying determining 

equations, Sugihara and May (1990) used a principle suggested by Lorenz (1969): similar 

present states in a deterministic system should evolve into similar future states. To 

compensate for the effects of noise, the evolution of a point in an embedding is predicted 

by the aggregate evolution of a set of neighbouring points, rather than just the evolution 

of the single most similar point (Lorenz’s “analogue” point). Aggregation can range from 

simple averaging to more sophisticated combinations, and the size of the neighbourhood 

varied to match the level of noise. TISEAN provides the predict and zeroth 

programs, which use local averages, and onestep and nstep, which use local linear 

prediction. Barahona and Poon (1996) suggested a global polynomial prediction method 

for detecting chaos in short, noisy, time series. However, Schreiber and Schmitz (1997) 

report that when noise is high, local average techniques are better for this purpose.  

Surrogate Testing, Time Asymmetry and Geometric Filtering 

Estimators for most quantitative indices assume nonlinear dynamics are present, 

and can produce misleading results when they are not. Hence, it is important to test for, 

rather than assume, nonlinear dynamics in a time series. However, most measures of 

nonlinear dynamics can vary with the static distribution of the data and are also sensitive 

to linear dynamics. A bootstrap (e.g., Davison & Hinkley, 1997) solution to these 

problems is provided by surrogate series testing (Theiler et al., 1992). Surrogate series are 

random variations on an experimental series that are constrained to preserve structure 

assumed under a null hypothesis. Permutations of the order of the experimental series, for 

example, produce surrogates that realize the null hypothesis of no temporal structure and 

the same static distribution of values as the experimental series.  
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A linear ARMA process provides a more interesting null hypothesis. For 

example, Theiler et al.’s (1992) Amplitude Adjusted Fourier Transform (AAFT) 

surrogates have as a null hypothesis a gaussian ARMA process observed through a static, 

possibly nonlinear, but invertible measurement function. Allowing for a monotonic 

nonlinear measurement function provides considerable flexibility to accommodate 

whatever static distribution characterizes the measured series. Schreiber and Schmitz 

(2000) developed an iteratively refined AAFT surrogate, computed by the TISEAN 

program surrogates, which is more accurate in matching both the spectrum and 

distribution of a finite data set.  

A test is constructed by comparing the surrogate series to the experimental series 

on a measure sensitive to nonlinearity. Significance is determined by the percentile 

attained by the nonlinear measure for the experimental series in the distribution of 

estimates obtained from the surrogates. In a survey of measures of nonlinearity, Schreiber 

and Schmitz (1997) found that nonlinear prediction error, obtained using a local 

averaging technique such as the TISEAN predict algorithm, was the most consistent 

in discriminating a range of noisy chaotic times series (see also Tong, 1990, for a review 

of tests of linearity). For nonlinear prediction error, the test is one tailed, with prediction 

error for the experimental series at the p’th percentile allowing rejection of the null 

hypothesis with confidence 100-p.  

A two-tailed test can be made using a cubic time reversal index, which measures 

the asymmetry of the distribution of differences between series values at a fixed delay 

using a statistic related to the third cumulant around zero (e.g., the TISEAN timerev 

command calculates the sum of cubes of the differences divided by their sum of squares). 
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This statistic is based on the theory of polyspectra (Rao & Gabr, 1984), which generalizes 

gaussian linear ARMA and Fourier models to include moments of order greater than two. 

Stationary linear gaussian processes have a symmetric difference distribution and zero 

cumulants of order higher than two, so nonlinearity or nonstationarity is indicated by 

either a significantly positive or negative estimate relative to the surrogate distribution.  

Schreiber and Schmitz (1997) found the cubic time reversal index to have low 

power with noisy Lorenz x series data, although it performed well for other chaotic 

series. The Lorenz series shown in Fig.1a yielded cubic time reversal indices of 0.396 

and 0.381 for delays 1 and 12 respectively. At a delay of one, the difference distribution 

contains three very large positive values, which dominate the time reversal index because 

of the cubing operation (the index is 0.007 with these values removed). The presence of 

such large outliers exacerbates the low efficiency of higher order cumulants for 

estimating distribution properties (cf. Ratcliff, 1979), perhaps explaining the low power 

with the Lorenz x series found by Schreiber and Schmitz.  

Diks, van Houwelingen, Takens and DeGoede (1995) discuss indices based on the 

reversibility of linear time series and suggest a potentially more efficient kernel based 

symmetry measure. Stam, Pinj and Pritchard (1998) suggested an alternative approach 

that combines prediction and time asymmetry without the need for surrogates. Prediction 

is compared for the original (x(t), t=1…N) and a time reversed version of the original 

(y(t)=x(N-t+1)), with any difference being attributable to nonlinearity. They found that 

their time asymmetry technique produced strong discrimination with the chaotic Rossler 

equations, even with 50% additive Gaussian noise. No matter how efficient the statistic it 
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is important to note that assymetry is only a sufficient indicator of nonlinearity, it is a not 

a necessary condition, so some nonlinear dynamics may display little asymmetry.  

Although surrogate testing is extremely useful, results should be interpreted with 

caution. Chaos does imply nonlinearity as measured by appropriate surrogate tests, but 

nonlinearity does not necessarily imply chaos. Nonstationary linear processes and 

nonlinear stochastic processes may also cause a positive finding, as may non-monotonic 

measurement functions. For example, Schreiber and Schmitz (2000) showed that a 

stationary second order linear autoregressive process observed through a measurement 

function made noninvertible by taking successive differences, a common procedure in 

time series analyses, produces a positive surrogate test result. Noninvertible measurement 

functions may arise in other cases, such as the measurement of signal power (i.e., squared 

amplitude).  

Spurious findings of nonlinearity may also occur if a time series is unevenly 

sampled or contains missing values (Schmitz, & Schreiber, 1999). The surrogate 

generation method of Schreiber (1998) may be applied to these cases. This method can 

create surrogate series for any null hypothesis that can be expressed as a cost function 

(computed by the TISEAN program randomize). Although this method is quite 

general, it uses a simulated annealing algorithm, and so can be very computationally 

expensive. Stam, Pijn and Pritchard (1998) also show that AAFT surrogate testing may 

produce false positive results where strong periodicities are present. They demonstrate 

that this problem can be fixed if the series is truncated to a length that is an integer 

multiple of the dominant period. However, this also usually requires that a more 

computationally expensive Discrete Fourier Transform be used for surrogate generation, 
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rather than the Fast Fourier Transform usually employed by AAFT algorithms. 

Schreiber’s (1998) cost function based surrogate algorithm can also address problems 

caused by periodic components, again at an increase in computational cost.  

Even with the available prediction and surrogate testing methods, noise remains 

extremely problematic for the characterization of nonlinear dynamics. Derivative plots 

are particularly useful for characterizing dynamics, but noise makes them difficult to 

interpret, so some sort of noise filtering is required. Traditional approaches to noise 

removal, such as frequency domain filters, cannot be applied to chaotic signals because 

they are, like noise, broadband. Instead, geometric filters (Grassberger et al., 1993), 

which smooth local neighbourhoods of the attractor, can be used. In each neighbourhood 

the signal is reconstructed using the first few principal components of a linearization, 

usually achieved by singular value decomposition to ensure numerical stability. Because 

chaotic signals mainly project onto the dominant components, whereas noise is 

distributed evenly across all components, the reconstructed signal has an improved signal 

to noise ratio. Corrections are usually also made for the effects of curvature and sensitive 

dependence (Schreiber, 1999) and the filter may be iterated.  

Like surrogate testing, local projective geometric filters should be used 

cautiously, and in particular the filter should not be iterated too many times (Mees & 

Judd, 1993). When deterministic dynamic structure is present it may be distorted by over-

filtering. For example, Mees and Judd found that a circular attractor contracted 

substantially after 20 iterations. Over-filtering can create apparent structure from noise 

because of the finite length of measured time series. Although in infinite samples noise is 

evenly distributed in phase space, inhomogeneities can occur in finite samples that are 
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expanded by the filtering process. Hegger et al. (1999) provide an example where pure 

gaussian noise produced a structured delay plot after 10 iterations. They advise that little 

more than three iterations should be required if chaos is present. As was the case for 

prediction, larger noise levels can be dealt with by using larger neighbourhoods, and by 

retaining fewer principal components.  

Nonlinear Dynamical Analysis of Noisy Data 

In this section we apply techniques described in the last section to time series 

corrupted by noise. Three noisy versions of the Lorenz series in Fig.1a were created by 

adding independent zero mean gaussian deviates with a standard deviation (SD) of 6.2 

(i.e., the SD of the series in Fig.1a from t=2000-10000), 8.7 and 12.4, creating stationary 

series with a signal to noise ratios of 1:1 (50% noise, data file n1.dat), 1:2 (66.6% 

noise, data file n2.dat) and 1:4 (80% noise, data file n4.dat). Linear analyses of the 

noisy series produced results consistent with the addition of white noise. The spectrum 

flattened, and the number of significant partial autocorrelation coefficients, and hence the 

order of estimated AR models, reduced as noise increased. No systematic patterning was 

evident in residuals from the AR models of the noisy series. Many of the NDA 

techniques discussed so far were not useful when applied to the noisy series; derivative 

plots were unstructured at all delays, no clear first minimum could be found in the mutual 

information, and false nearest neighbour plots gave no clear indication of a minimum 

embedding dimension.  

Testing for Stationarity 

The first task, and perhaps the most difficult and crucial task in the dynamical 

analysis of behavioural data, is establishing stationarity. Stationarity is an important 

requirement for NDA, and when it does not hold, or cannot be shown to hold, one must 



Penultimate Draft of a paper in press in Nonlinear Dynamics in Psychology and the Life 
Sciences, 2005 

25 

be sceptical about the validity of results. Unfortunately, stationarity checks are inherently 

vulnerable to noise because they are based on the comparison of sub-sequences of a 

series, and so sample size is reduced. As illustrated by Fig.1a, weak stationarity checks 

(on the mean, variance, and auto-covariance) are not very discriminating of 

nonstationarity in the Lorenz series. What is required is a method of checking whether 

the full joint probability distribution, rather than just its lower order moments, is constant.  

Schreiber’s (1997) cross-prediction method of detecting nonstationarity is an 

attractive candidate, because neighbourhood aggregation can make prediction noise 

tolerant. This method determines the degree to which information about one segment of a 

time series allows prediction of another segment of a time series. If the time series is 

stationary and each segment sufficiently long, equal cross prediction should be possible, 

because each segment will be governed by the same joint probability distribution.  

Figure 5a illustrates the mean squared error for one-step prediction for the first 

10000 values of the noiseless Lorenz series broken into 10 consecutive segments of 

length 1000. The algorithm used locally constant prediction in delay-17 five-dimensional 

coordinates, averaged over a minimum of 30 neighbours, to generate one-step-ahead 

predictions. Larger embedding dimensions and neighbourhood sizes produced a similar 

pattern of results, as did smaller delays. The cross prediction method correctly detects the 

initial nonstationarity as the series settles into the attractor and stationary behaviour 

thereafter.  The result is most striking for the first 1000 values with the next 1000 

showing only a slight effect. These results support the earlier decision to remove the first 

2000 values from further analyses as a cautious response, although in practice the 

evidence might only support removing the first 1000. 
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-------------------------------- 
Insert Figure 5 about here 

--------------------------------- 
Figure 5b demonstrates that the cross prediction method still works when the 

series is corrupted with up to 80% noise. Prediction was quite poor overall because of 

high noise levels but the first segment is clearly singled out and even the second segment 

differs slightly. The parameters used were those that produced the best cross-prediction 

(i.e., prediction of other segments). Although this required some trial and error, the search 

was tractable as only two parameters were important: the embedding dimension and the 

neighbourhood size. For the 80% noise series, averages over a minimum neighbourhood 

size of 40 in 10 dimensional coordinates were best. In the 50% noise case, the predict 

default neighbourhood size of 30 was best at either 9 or 10 dimensions. For uniformity, 

10 dimensions will be used for all noise levels. In all cases a delay of one was clearly 

superior to all other delays, indicating that longer delays are not required when noise is 

high. Further analyses of the noisy Lorenz series were carried out using the 8000 values 

from t=2001…10000.  

These results demonstrate the utility of Schreiber’s (1997) cross-prediction 

method with high noise levels and relatively short sub-sequences of 1000. In principle, 

more sophisticated prediction methods, or methods that are more appropriate given 

knowledge of the underlying dynamics, can be incorporated as they become available.  

The degree of averaging can be adjusted to suit the level of noise, and Schreiber claims 

that this approach can work with sub-sequences as short as 300-400. He presents cross-

prediction results in a similar way to recurrence plots, using grey scale to indicate the 

level of error, but in the present case the graphs in Fig.5 were clearer.  



Penultimate Draft of a paper in press in Nonlinear Dynamics in Psychology and the Life 
Sciences, 2005 

27 

An advantage of prediction methods is that parameters such as delay and 

embedding dimension can be chosen based on what gives the best predictions. Selection 

of parameters via minimising cross-prediction error is particularly appropriate as it avoids 

over- fitting (Browne, 2000), which can be an important problem because of the flexibility 

of local prediction techniques. Typically, it is wise to use a large embedding dimension 

with prediction methods so that all available information can be utilised. However, there 

is an increased computational cost associated with the higher dimensional representation. 

For the Lorenz data, the 10-dimensiona l delay-one coordinates that were optimal for 

cross-prediction were usually appropriate for the following analyses. Some adjustment 

was necessary, but in general this involved changing only a single parameter, making the 

process of finding appropriate settings tractable.  

Testing for Nonlinearity 

Surrogate tests aim to determine whether a series contains nonlinear structure, and 

so is a viable candidate for NDA. For each stationary noisy series, 99 surrogate series 

were created using Schreiber and Schmitz’s (2000) iteratively refined AAFT algorithm 

(e.g., for 50% noise, surrogates n1.dat -n99 –o, which produces surrogates 

with names n1.dat_surr_#, where #=001…099). As discussed by Theiler, Linsay 

and Rubin (1993), a mismatch between the beginning and end of the series poses a 

problem for surrogate generation schemes that match linear autocorrelations in the 

original and surrogate series using Fourier methods. For finite series, Fourier amplitudes 

correspond exactly to the autocorrelation function only if the series is one period of a 

repeating sequence. Where this does not hold, tests of nonlinearity may produce false 

positives. Endpoint mismatch can be corrected by choosing a subsequence of the original 
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series that matches end points as closely as possible (Ehlers, Havstad, Prichard & Theiler, 

1998).  

TISEAN provides the program endtoend, which chooses a subsequence with a 

length that is a multiple of 2, 3 or 5 (as required by a Fast Fourier Transform), to 

minimises both mismatch and phase slippage between the beginning and end of a series. 

For the Lorenz data only the 80% noise series required truncation, as reported by the 

output of endtoend n4.dat, by removing the first 193 points, resulting in a series of 

length 7776 (n4s.dat), 2.8% shorter than the original series. An alternative approach, 

useful where a matching subsequence cannot be found or the truncation required is too 

great, is to avoid Fourier based methods and directly match the second order 

autocorrelation structure using Schreiber’s (1998) method.  

Tests used the generally most discriminating measures of nonlinarity examined by 

Schreiber and Schmitz (1997): one-step prediction and cubic time assymetry. The 

multiple input file processing capability of the TISEAN predict and timerev 

programs was used to process the original and surrogate files in one pass3. Cubic time 

assymetry was not discrimative at any noise level and for differences at any delay, 

performing even worse than was reported by Schreiber and Schmitz for the Lorenz series. 

One possible reason is that Schreiber and Schmitz used noise created by phase 

randomisation so that the noisy series had the same spectrum as the original series. The 

gaussian noise used here has a different spectrum and produces some large deviates that 

result in increased sampling variability for the cubic time reversal index.  

Locally constant prediction, in contrast, performed well, detecting the nonlinearity 

in the original sequence at a 97% level of confidence even for the 80% noise series, as 
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shown in Fig.6. Figure 6 shows root mean square prediction error (RMSE) standardised 

using the mean and standard deviation of the surrogate distribution. Z scores for the 

original series were –7.13, –3.18 and –2.18 at 50%, 66,6% and 80% noise series. Some 

experimentation was required with the extent of neighbourhood averaging used by the 

TISEAN predict program. This program allows the radius of the neighbourhood to be 

specified either in absolute units or as a fraction of the series standard deviation. The later 

method (specified by the –v option) was used, as it automatically scales for the differing 

standard deviations of the noisy series.  

-------------------------------- 
Insert Figure 6 about here 

--------------------------------- 
To the nearest 0.1, a neighbourhood size of 1.6 standard deviations produced the 

smallest RMSE for the original series, and for the 50% (RMSE=6.879) and 66.6% 

(RMSE=9.478) noise series. A delay-one 10-dimensional embedding was also optimal, in 

agreement with the cross-prediction findings, despite the larger neighbourhoods used 

here. The same setting also produced the best prediction for the 80% noise series 

(RMSE=13.058) but discrimination was poor, with the original series being placed only 

at the 18th percentile. Larger neighbourhoods produced progressively better 

discrimination for the 80% noise series, with a radius of 2.6 producing the best 

discrimination, at the 3rd percentile as shown in Fig.6c, but slightly poorer prediction 

(RMSE=13.316). For the other two series a broad range of neighbourhood sizes resulted 

in prediction error for the original series at the first percentile.  

Stam et al.’s (1998) method, comparing nonlinear prediction for the original and 

time-reversed series, was also applied to the noisy Lorenz data. In all cases the time-

reversed data had a larger prediction error: 6.889, 9.488, and 13.038 for 50%, 66.6% and 
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80% noise with 1.6 SD neighbourhoods, and 13.322 for 80% noise with a 2.6 SD 

neighbourhood. However, the differences were not nearly as large as reported by Stam et 

al. for the Rossler equations, or the average differences for the surrogate prediction tests. 

This method also suffers from the drawback that it does not provide a confidence level.  

In an attempt to improve on the locally constant prediction used by the predict 

program, surrogate tests were also constructed using local linear model prediction error 

as calculated by the TISEAN onestep program.  Most parameters were the same as 

for predict, but the best discrimination was produced with small minimum 

neighbourhood around 35, where the original series is at the 4th percentile and Z=-2.03. 

As with locally constant prediction, error decreased with neighbourhood size. The 

onestep program outputs prediction error divided by the series standard deviation, 

which decreased from 0.984 for neighbourhoods of 35 to 0.94 for neighbourhoods of 400. 

As these results were barely on par with locally constant prediction, and their 

computation was at least an order of magnitude slower, predict seems preferable.   

 Although not examined by Schreiber and Schmitz (1997), prediction error for 

more than one step was calculated to determine if better discrimination could be 

achieved. The results, shown in Fig.7, were costly to compute, requiring an overnight run 

for each series. They show that discrimination between the surrogates and the original 

series was substantially improved for longer prediction lags. Figure 7b shows that, 

although a neighbourhood of 2.6 SD produced the best discrimination for lag one 

predictions, much better discrimination was produced at longer lags by a neighbourhood 

of 1.6 SD, which is also optimal for minimising overall prediction error. Figure 6d shows 

the error distribution for lag 14 predictions, which produced the best discrimination 
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across all lags, demonstrating the potential improvement in discrimination afforded by an 

examination of multiple prediction lags.  

-------------------------------- 
Insert Figure 7 about here 

--------------------------------- 
Noise Filtering 

The analyses performed so far are important for the application of NDA to data 

with unknown properties because they validate two fundamental assumptions of most 

NDA techniques: stationarity and the presence of nonlinear dynamics. Passing both tests 

helps to ensure that the data are sufficient in terms of both quantity and quality for NDA 

and also validates the application of geometric filters to remove noise. The high noise 

levels in these examples defeated the direct application of quantitative indicators, such as 

dimensionality or Lyapunov coefficients, and qualitative indicators, such as derivative 

plots. However, with appropriate filtering, much of the structure in the original time 

series can be recovered (e.g., Fig.1b), derivative plots are structured (e.g., Figs.2c and 

2d), and even D2 estimation reveals something close to a scaling region (e.g., Fig.4c), 

although it underestimates the Lorenz attractor’s dimensionality. Before examining these 

results, however, it is useful to examine the behaviour of the filter itself. 

Figure 8a shows the increase in the correlation between the original and filtered 

series as a function of the iteration of Grassberger et al.’s (1993) algorithm (e.g., ghkss 

n1.dat –m10 –d1 –q2 –k400 –i9 –o, the -i9 and –o parameters create 

files containing the filtered series for each iteration n=1…9, with extensions .opt.n). 

The algorithm performs orthogonal projections onto a q-dimensional manifold in a 

neighbourhood of minimum size k for each data point. Correlations are shown for three 

values of q, 1, 2 and 3, along with two minimum neighbourhood sizes, 400 and 800, 
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corresponding to neighbourhoods containing 5% and 10% of the series respectively. The 

delay-one 10-dimensional coordinates adopted in previous analyses also produced the 

highest correlations, but larger neighbourhoods were used for filtering than for cross-

prediction for two reasons. First, larger neighbourhoods can be used because the entire 

series of length 8000 is available, whereas only 1000 observations were available for 

cross-prediction. Second, larger neighbourhoods produced better correlations between the 

filtered and original series, although the improvement with increasing size reduced for 

larger neighbourhoods and less noise, so a difference between size 400 and 800 is only 

evident for the 80% noise series in Fig.8a. 

-------------------------------- 
Insert Figure 8 about here 

--------------------------------- 
Generally, increasing filter iterations and neighbourhood size, and lowering the 

dimensionality of the projections, produced smoother derivative plots (e.g., Figs.2c and 

2d). Schreiber (1999) advises that even locally constant projections (-q0) may be used, 

but here derivative plots revealed some clear artefacts induced by filtering for locally 

constant and one-dimensional projections (-q1). The best results visually were produced 

by two-dimensional projections (-q2), which may be because this closely matches the 

dimensionality of the Lorenz series (2.05). However, the two-dimensional projection 

could cause some shrinkage of the underlying dynamics (cf. Mees & Judd, 1993), as 

revealed by plots of the filtered series standard deviation in Figs.8b and 8c, and 

comparison of Figs.1a and 1b. Series filtered with three-dimensional projections, in 

contrast, almost exactly matched the standard deviation of the underlying dynamics at 

higher iterations, but not did correlate as highly with the original series as lower 

dimensional projections. These finding suggest that the asymptotic SDs of the filtered 
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series for a range of projection dimensions may be used to determine what proportion of 

variance in a noisy series is due to nonlinear dynamics, and perhaps to provide a rough 

estimate of their dimensionality.  

In applications, the information in Fig.8a is not available, but some guidance in 

parameter setting can be gained by examining SDs and derivative plots for the filtered 

series. Casdagli (1991) and Mpitsos (1994) have argued that the best evidence for low 

dimensional chaos is a complex but structured delay plot. As shown in Fig.2c, after six 

iterations using two-dimensional projections, the derivative plot of the filtered 50% noise 

series is quite structured, and contains smooth trajectories. The corresponding derivative 

plot using three dimensional projections (Fig.2d) is less clear and the trajectories less 

smooth, but important aspects of the dynamics are still evident, such as quicker changes 

near the centre of each state and slower changes between states and at extremes. 

Derivative plots for the higher noise series were correspondingly less structured, but 

appropriate filter setting still revealed the qualitative aspects of the dynamics. It is wise to 

always examine filtered series using derivative or delay plots, as some settings can 

produce artefacts, such as under filtering of the beginning and end of the series.  

Discussion 

The approach taken in this paper should be generally useful, but some of the 

specific conclusions are no doubt limited to the Lorenz dynamics and additive Gaussian 

noise. In practice, it is likely that an iterative approach will be required to refine theory 

and measurement techniques. As well as different dynamics, different noise models may 

be required, such as coloured noise or noise in dynamical parameters. Parameter noise 

can be particularly problematic as nonlinear systems can be extremely sensitive to some 

changes in parameters but virtually invariant with other parameter changes. Casdagli 
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(1997) extended the idea of embedding to parameterised families of dynamical systems, 

allowing nonstationarity due to slowly varying parameters, and developed methods based 

on recurrence plots for reconstructing slowly varying parameter changes. Hegger, Kantz, 

Matassini, and Schreiber (2000) advocate “over-embedding” of such systems with p 

varying parameters in an m>2(d + p) dimensional space.   

An interesting possibility suggested by the results on stationarity testing is that 

separate blocks of trials in behavioural experiments or segments of physiological 

recordings can be concatenated in order to obtain a series of sufficient length for NDA. 

Often, avoidance of nonstationarity due to fatigue requires that measurement be broken 

up into blocks with rest periods between them. Longstaff and Heath (1999) report cases 

where separate segments of stationary chaotic time series can be concatenated without 

confounding NDA. In practice, it will not be known if each segment is a sample from the 

same stationary series, so a method of checking is needed. Conversely, it is often useful 

to detect change points, as they may signal underlying changes or the need for 

intervention. Cross-prediction stationarity checks can help to perform both functions. 

Although concatenation is attractive, and possibly necessary if NDA is to have impact in 

many areas of the life sciences, a number of questions spring to mind. Should embedding 

points that span segments be eliminated? Should segments be trimmed before 

concatenation to enforce constraints such as periodic continuity? To what degree does 

concatenation distort low frequency structure as its period approaches the length of sub-

sequences? Hopefully future research will help to answer these questions.  

The results of testing for nonlinearity were encouraging, although quite a deal of 

parameter tuning was required to produce sufficiently powerful tests. One relatively 
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unexplored possibility opened up by these results is that higher power may be available at 

longer prediction lags. Although the results given in Fig.6d are promising, a post hoc 

approach like choosing the lag with the greatest discrimination will inflate Type 1 error.  

Should the use of longer prediction lags prove generally useful, a test that integrates over 

lags will be required, along with simultaneous confidence intervals, rather than the point-

wise intervals shown in Fig.7. 

For all prediction methods applied to noisy series a delay of one was found to 

produce the best results, contrasting sharply with the noiseless case where longer delays 

were preferred. One possible implication is that dynamics will be difficult to identify in 

noisy series unless they are finely sampled, as in Fig.1. Coarse sampling may occur in 

practice if the dynamics evolve on a much faster time scale that the measured behaviour. 

A preliminary exploration of this issue, using a series of length 10000 created by 

sampling every 100th value from the first million values of the Lorenz x series, found that 

the prediction based surrogate test was still able to detect nonlinearity even with 80% 

noise. As shown in Fig.7c, significant indications of nonlinear dynamics were obtained at 

only the first two lags, contrasting with the results for a finer sampling. These results are 

encouraging for applications where the coarseness of sampling is not within experimental 

control. 

Although geometric filtering was very effective in removing noise and recovering 

the underlying nonlinear dynamics, clearly there is a good deal of art in producing 

“clean” series and derivative plots, with an attendant risk of inflated Type 1 error. The 

neighbourhood size and projection dimension of geometrical filters act in much the same 

way as kernel bandwidth and regression order do to control smoothness in nonparametric 
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regression functions (e.g., Wand & Jones, 1995). The two techniques are conceptually 

related, except that nonparametric regression operates in the time domain for a time 

series, whereas geometric filtering acts in the embedding space. The job of the analyst 

will be made much easier if automatic neighbourhood size selection methods can be 

developed, in much the same way that automatic bandwidth selection methods are now 

available for nonparametric regression. Fortunately, both global and local approaches to 

geometric filtering are very active areas of research (e.g., Roweis, & Lawrence, 2000; 

Tenenbaum, de Silva & Langford, 2000).    

The filtering results reported here are encouraging because they enable graphical 

identification of qualitative features of the dynamics underlying a noisy series. However, 

filtering can both fail to remove sufficient noise and introduce systematic distortions that 

affect estimates of quantitative dynamical indices, such as D2. Figure 4c shows the best 

local slope plot that was found for the filtered 50% noise Lorenz series. Something 

approaching a scaling region occurred around a distance of 5-6, but the slope estimates 

did not converge and overestimate the Lorenz attractor’s dimension. Another apparent 

scaling region occurred around a distance of 8-9 but it is very narrow and substantially 

underestimates the dimensionality of the Lorenz attractor. A possible reason for these 

problems is the use of a two-dimensional projection, which results in shrinkage of the 

underlying dynamics. Figure 4d shows the results when filtering used three-dimensional 

projections (i.e., the series shown in Fig.2d). No proper scaling region is revealed, 

although the region around 10 is close and underestimates dimensionality only slightly.  

If the present results are any guide, absolute estimates of D2 from filtered series 

are not likely to be very accurate, although they may suffice for relative comparisons. 
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Caution should be exercised in the estimation of quantitative indices from filtered series, 

because, as with any smoothing technique, filtering can introduce systematic bias. Either 

bias corrections must be developed, or alternative noise tolerant indices used that can be 

applied to unfiltered series. One graphical technique associated with D2 estimation, the 

space-time plot was informative without filtering (e.g., Fig.3b). The same Theiler 

window was indicated as for the original series, and evidence consistent with 

deterministic dynamics provided: constant rather than increasing contours for longer time 

separations.  Note, however, that increasing contours do not necessarily rule out 

deterministic dynamics, as they may be caused by a combination of deterministic and 

stochastic dynamics. In general, none of the techniques reviewed here can definitively 

differentiate nonlinear stochastic and chaotic processes. Cencini, Falcioni, Kantz, Olbrich 

and Vulpiani (2000) discuss this issue and a possible analytic approach.  

In summary, the results presented here suggest that methods based on delay-space 

averaging and prediction provide the most powerful means to address problems caused 

by measurement noise. Although it will probably never be possible to prove chaos in a 

noisy measured time series, robust and powerful algorithms are now available to test for 

and quantify nonlinear structures rather than simply assuming it. Prediction based 

methods are attractive not only for their noise-tolerance, but also if the aim of a dynamic 

theory is to explain all systematic temporal variation, as they provide direct measures of 

the available structure that are relatively theory free, in the sense of not requiring 

knowledge of the form or parameters of determining equations. Geometrical filtering 

methods, which are also based on delay-space averaging, appear to provide the best 

means of graphically characterizing nonlinear dynamics in noisy time series.  
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Footnotes 
                                                 

1Stationarity up to order k dictates invariance only of joint moments up to order k (Rao & 

Gabr, 1984). For a linear gaussian process, k=2 stationarity implies “strong” stationarity, 

invariance of the full joint probability distribution, as moments greater than two are zero. 

2Recurrence quantification analysis (RQA, Trulla, Giuliani, Zbilut & Webber, 1996; 

Webber & Zbilut, 1994) provides a number of indices to quantify recurrence plots. 

Thomasson, Hoeppner, Webber and Zbilut (2001) claimed that RQA “does not require 

assumptions about stationarity, length or noise” (, p.94).  However, the RQA indices are 

formed by aggregating local measures across a time series and aggregation does require 

stationarity if a rigorous meaning is to be attached to the aggregate values. Both series 

length and noise are important in obtaining precise estimates, and an embedding may not 

even be possible due to noise, so noise and length are relevant to RQA.  

It is also difficult to decide what distance should be chosen to define recurrence, a critical 

parameter that has a very strong effect on the values of the RQA indices. 

3timerev n1.dat n1.dat_surr_0?? –d1 > n1tr.dat and predict 

n1.dat n1.dat_surr_0?? –m10 -d1–v1.6 -o > n1pred.dat. The “??” 

characters are DOS single character wildcards, -d specifies the delay, and the redirection 

of standard output (>) stores the measure of nonlinearity in a file. For the predict 

command, the –m option specifies the embedding dimension, and –o writes predicted 

values to a separate output file with _pred appended to the name of each input file. 
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FIGURE CAPTIONS 

Figure 1. a) 10000 x values (thin line) for the Lorenz differential equations: 

( )xydtdx −= 10 , ( )yzxdtdy −−= 28 , and 38zxydtdz −= , solved with step 

size=0.01 and starting from (x,y,z,t) = (0,1,0,0), with a Lowess (Cleveland, 1979) smooth 

using a 1000 element moving window (thick line). The Lorenz series was generated using 

the default settings of the Smalldyn program (http://keck2.umd.edu/dynamics, see Nusse 

& Yorke, 1997). Analyses reported here examine the first 10000 values (data file 

lorenz1.dat), values from t=2001-10 000 (lorenz2.dat) or values from t=2001-

100 000 (lorenz3.dat). (b) Filtered noisy Lorenz series from t=2001-10 000. Noise 

was additive Gaussian with the same standard deviation as the Lorenz series (i.e. 50% 

noise, n1.dat). The geometric filter was iterated six times, retaining two singular 

values and using a minimum neighbourhood size of 400 in a 10 dimensions delay 1 

embedding (ghkss n1.dat –i6 –q2 –k400 –m10 –d1 –o 

n1q2k400.dat).  

Figure 2. A plot of x(t) from Figure 1a against its derivative estimated at (a) lag one, and 

(b) lag 12. Points in the derivative plot are joined to emphasise the trajectory of the 

dynamics. In (a) t = 1…10000, whereas for (b) and (c) t = 2001…10000. In (a) points for 

t=1…2000 are joined by a dotted line, and the four “spikes”, one pointing the left from 

the top lobe and three pointing to the right from the bottom lobe, are caused by single 

points with unusually large differences. Lag 12 difference plots for (c) the filtered 50% 

noise series shown in Figure 1b, and (d) the 50% noise series filtered with the same 

parameters as (c), but using a three rather than two-dimensional projection.  
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Figure 3. Space-time separation plots showing contours of constant probability for spatial 

separation as a function of time separation from 1-500 for pairs of embedded point s from 

(a) the series in Fig.1a from  t =2001-10000 using a 5 dimensional delay 17 embedding 

(stp lorenz2.dat -%0.1 -t500 -d17 –m5 -o) and (b)  The Lorenz series 

from  t=2001-10000 with additive Gaussian noise of equal standard deviation and a 10 

dimensional delay 1 embedding (stp n1.dat -d1 -m10 -%0.1 -t500 –o). 

For parameter -%f, the algorithm calculates k contours, where k is the nearest integer less 

than 1/f, at probability values 1/k,2/k…1. A weakness of this algorithm is that it produces 

a noisy upper contour, as it is the sample maximum, which should not be given much 

weight in examining the pattern in the space-time plot. The contour for the maximum 

value has been omitted from (b) to provide clearer resolution of the lower contours. 

Figure 4. Local slopes of log(C(ε)) vs. log(ε) plots for a range of distances, ε, and 

embedding dimensions from 1 to 10 in a delay 17 embedding with a Theiler window of 

100 (a) for the Lorenz series for t = 2001-100 000 (d2 lorenz3.dat –M1,10 

-d17 –t100 -N0  –o), (b) the Lorenz series for t=2001-10000 (d2 

lorenz2.dat –M1,10 -d17 –t100 -N0 –o), and the filtered noisy Lorenz 

series (c) using 2 dimensional projection, as in Figures 1b and 2c (d2 

n1q2k400i6.dat –M1,10 -d17 –t100 -N0 –o) and (d) 3 dimensional 

projections, as in Figure 2d  (d2 n1q3k400i6.dat –M1,10 -d17 –t100 -N0 

–o). The -N0 option indicated that the computation should be done on all possible pairs 

of points (the default is a maximum of 1000). Lower lines indicate lower embedding 

dimensions. The dashed line in each panel indicates the true dimension, 2.05.  
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Figure 5. One-step cross prediction errors obtained using 10 sequential 1000 element 

segments (separate lines) to obtain predictions for all segments (abscissa) for (a) the 

series in Fig.1a using a 5 dimensional delay 17 embedding and a minimum 

neighbourhood size of 30 (nstat_z lorenz1.dat -#10 –m5 –d17 –k30 -o) 

and (b) the series in Fig.1a plus Gaussian noise with double the standard deviation of the 

Lorenz series using a 10 dimensional, delay 1 embedding and a minimum neighbourhood 

size of 30 (nstat_z lorenz1.dat -#10 –m10 –d1 –k40 -o). 

Figure 6. Histograms of standardised root mean squared one-step prediction error (Z) in a 

10 dimensional delay one embedding for original (filled bar) and surrogate (unfilled bars) 

series (a) 50% Noise and 1.6 standard deviation (SD) neighbourhood radius (predict 

n1.dat n4.dat_surr_0?? –m10 –d1 –v1.6 -o), (b) 66.6% Noise and a 1.6 

SD neighbourhood radius (predict n2.dat n4.dat_surr_0?? –m10 –d1 –

v1.6 -o), and (c) 80% Noise and a 2.6 SD neighbourhood radius (predict n4.dat 

n4.dat_surr_0?? –m10 –d1 –v2.6 -o). (d) 14 step prediction error for the 

80% noise series with a 1.6 SD neighbourhood radius (predict n4.dat 

n4.dat_surr_0?? –m10 –d1 –v1.6 –o –s14). The predict program 

outputs root mean squared prediction error; standardization used the mean and standard 

deviation of the surrogate data.  

Figure 7. Root mean square locally constant prediction error as a function of prediction 

lag for (a) 50% and 66.6% noise series with a 1.6 standard deviation (SD) neighbourhood 

radius, (b) 80% noise series with a 1.6 SD radius and a 2.6 SD radius, and (c) coarsely 

sampled 80% noise series, with a 1.6 SD radius. The symbols are prediction error for the 
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original series. The solid line is the mean prediction error for the 99 surrogate series. The 

dotted lines are a 95% confidence interval for surrogate prediction, estimated by the 3rd 

and 97th order statistics of the surrogate distribution. 

Figure 8. (a) Squared correlation between the original Lorenz series from t=2001-10000 

and filtered series, and (b) the standard deviation (SD) of the filtered series, as a function 

of filter iterations retaining one to three singular values (q1-q3). For the 50% noise series, 

minimum neighbourhood size was either 5% (k400) or 10% (k800) of the series length, 

whereas for the 80% noise series it was 10% (k800) or 20% (k1600) of the series length. 

The standard deviation of the original Lorenz series (6.2) is indicated by a solid flat line 

in (b) and (c).  
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