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The study of executive control mechanisms has bene-
fited in recent years from experiments in the task-switching 
paradigm (for a review, see Monsell, 2003). These experi-
ments require participants to perform two different tasks 
(A and B) repetitively, sometimes switching between the 
tasks and sometimes repeating a task. Rogers and Monsell 
(1995) developed a task-switching paradigm using alter-
nating runs: Participants were required to perform tasks 
in a sequence, such as AABBAABB. This design ensured 
that both task switching (from A to B and from B to A) 
and task repetition (AA and BB) occurred within the same 
block of trials. Rogers and Monsell found a task-switching 
cost: Response time (RT) was slower on switch trials than 
on nonswitch trials. Rogers and Monsell also found that 
this switch cost decreased when the interval between one 
stimulus and the next (the response-to-stimulus interval, 
or RSI) was increased but that there was an irreducible 
switch cost that was not removed, no matter how long 
RSI became. Other researchers have since replicated and 
extended these findings, using the repeated runs design 
(e.g., De Jong, 2000; Gilbert & Shallice, 2002; Karayani-
dis, Coltheart, Michie, & Murphy, 2003; Lien, Schweick-
ert, & Proctor, 2003; Los, 1999; Nieuwenhuis & Monsell, 
2002; Sohn & Anderson, 2003; Yeung & Monsell, 2003).

The Failure-to-Engage Hypothesis
Many theories have been proposed to explain the costs 

associated with switching between tasks. Some theories 

use the concept of “task-set inertia” (TSI), which has gar-
nered substantial empirical support (e.g., Allport, Styles, 
& Hsieh, 1994; Gilbert & Shallice, 2002; Los, 1999; 
Yeung & Monsell, 2003). Theories including TSI propose 
that each of the two tasks to be performed has an associ-
ated task set, loosely defined as a mental state that must be 
prepared in order to accomplish that task. Switch costs are 
explained as at least partly due to inefficiency in changes 
between task sets. Other theories include the concept 
of stimulus-cued completion (SCC; Rogers & Monsell, 
1995). SCC posits that residual switch costs (i.e., switch 
costs that remain even at very long RSI values) are due 
to an inability to complete task set switching without the 
presence of an imperative stimulus.

The failure-to-engage (FTE) theory of De Jong (2000) 
took a different approach and assumed no difference be-
tween voluntary (endogenous) and stimulus-cued (ex-
ogenous) preparation. Rather, the FTE theory proposed 
that task preparation, however triggered, was all or none. 
Participants attempt to switch task sets before each switch 
trial, but sometimes this attempt fails. According to this 
account, responses arise from either a “prepared” process, 
in which the participant is ready to perform the task, or 
an “unprepared” process, in which the participant must 
first load the associated task set before the task can be 
performed (see Figure 1). Prepared and unprepared pro-
cesses lead to faster and slower RTs, respectively. Thus, 
the observed RT on any given trial is a sample from either 
the distribution associated with the prepared process (with 
probability given by, say, α) or the unprepared distribution 
(with probability 1�α). The observed RT distribution is a 
mixture of two unobserved distributions.

The FTE theory does not specify the form of the unob-
served distributions or the processes that give rise to them, 
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but it does provide constraints on the value of α, the mixing 
parameter. In situations in which the participant is relatively 
unprepared, α will be small, and many observed responses 
will be drawn from the unprepared distribution. When the 
probability of preparation (i.e., α) increases, the observed 
distribution is more similar to the prepared RT distribution.

According to the FTE theory, the probability of prepa-
ration (α) can be changed by experimental manipulations. 
For example, longer RSI values or greater rewards for 
fast responses should both increase α. Nieuwenhuis and 
Monsell (2002) found that larger RSI values increased the 
value of α in model fits of the FTE theory, but there was 
a limit: Across participants, the mean estimate of α was 
only 64%. This implies that residual switch costs are due 
to participants’ failure to engage on over one third of tri-
als, even when highly motivated and given ample prepara-
tion time.

De Jong (2000) and Nieuwenhuis and Monsell (2002) 
found that the FTE model fit the observed data well, lend-
ing support to that theory. Other researchers have also 
observed data that are generally consistent with the FTE 
theory or, at least, are not in direct contradiction to it. 
Lien et al. (2003) found evidence supporting the assump-
tion that executive control processes can accommodate 
processing of only one task at a time, consistent with the 
mixture assumption of FTE. Los (1999) found evidence 
in favor of models that include two separate response 
strategies, such as the FTE theory (as opposed to criterion 
shifting models). Monsell, Sumner, and Waters (2003) 
observed that RT distributions were generally consistent 
with predictions from the FTE model, although that model 
was not uniquely supported by their data.

A Critical Test of the FTE Theory
Other results have been less clear in their support of 

FTE theory. Gilbert and Shallice (2002) found that the 

binary assumption of FTE (i.e., that task-set preparation 
is “all or nothing”) was not required to explain their data. 
Lien et al. (2003) observed interactions between RSI and 
task response style that were inconsistent with the basic 
version of FTE theory. These studies did not directly test 
the FTE model: They were designed to meet some other 
goals, and support (or not) for the FTE theory was ob-
served only indirectly. Nieuwenhuis and Monsell’s (2002) 
study was designed as a direct test of the FTE theory, but 
the test was an evaluation of goodness of fit: Data were 
collected, and the FTE theory was shown to be able to fit 
them. However, goodness-of-fit tests are subject to a com-
mon criticism: Just because a model is consistent with some 
data does not mean that the model is “correct,” especially 
when it is not clear what other patterns of data are consis-
tent with the model (e.g., Roberts & Pashler, 2000).

A better way to test the FTE hypothesis is to derive 
a strong prediction that can be tested in data. Falmagne 
(1968) demonstrated a surprising prediction of all binary 
mixture models—their distributions have fixed crossing 
points across changes in mixture probabilities. Falmagne 
(1968) used this property to disprove another binary mix-
ture model of choice RT (Falmagne’s, 1965, “fast guess” 
theory). The fixed-point property applies to any binary 
mixture model, including the FTE theory. Falmagne’s ob-
servation was that, if the probability distribution functions 
(PDFs) of the two mixture components cross at some point, 
then all mixtures of those two distributions must also cross 
at that same point.1 For the FTE theory, this means that if 
the PDFs for prepared and unprepared RTs cross at some 
point, then all observed RT distributions—mixtures from 
those two—must also cross at the same point. This prop-
erty is illustrated in cartoon fashion in Figure 2.

If the FTE theory is correct, when an experimental ma-
nipulation varies, the probability of preparation (α) the PDFs 
produced under different levels of that manipulation must 
share a common crossing point, such as the 25%, 50%, and 
75% mixtures in Figure 2. This property leads to a simple 
critical test for the FTE theory: Experimentally manipu-
late the probability of preparation and observe the crossing 
points of the resulting PDFs. If a binary mixture process un-
derlies RT, the PDFs must share common crossing points.

This test applies only to theories that are pure binary 
mixtures. That is, the fixed-point prediction will hold only 
for theories that assume the same two unobserved distri-
butions mix in different proportions. There must be no 
other change than mixing probability between the differ-
ent conditions; otherwise, the fixed-point property will 
not hold. Although these restrictions may seem unneces-
sarily strict, the FTE theory has been developed and im-
plemented as a pure binary mixture model, with no model 
changes other than mixture probability between different 
conditions (e.g., De Jong, 2000; Nieuwenhuis & Monsell, 
2002). Relaxation of these strict assumptions can allow 
the FTE theory to avoid making the fixed-point predic-
tion (we examine such a generalization of the FTE theory 
later). Note also that De Jong’s inclusion of the δ param-
eter (p. 361) does not change the fixed-point prediction. 
This parameter captures the idea that the (hypothetical) 

Figure 1. Schematic illustration of the failure-to-engage theory 
of task switching. Observed response time (RT) distribution is a 
mixture of two unobserved distributions: those from “prepared” 
and those from “unprepared” mental states.
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mixing distribution for “prepared” responses is related by 
a simple shift to the (observed) distribution for nonswitch 
responses in the easiest condition. This assumption simply 
specifies the form of one of the mixing distributions, but 
the fixed-point property holds for any particular forms of 
the mixing distribution.

We carried out the test below using a standard task-
switching paradigm with a letter task and a digit task. For 
each task, we collected data from switch and nonswitch 
trials, each for three different RSI values. The FTE theory 
supposes that all six of these distributions arise as differ-
ent α mixtures of the same pair of underlying distributions 
(for each task). The six distributions had 15 possible pair-
ings, corresponding to 15 crossing points, and 12 of these 
were predicted to be identical under the FTE theory. If the 
FTE theory is correct, those 12 crossing points should not 
vary systematically.

METHOD

Participants
Twenty undergraduate students (ages 18–46 years, M � 23.4 

years) from the University of Newcastle participated in this study in 
exchange for partial course credit.

Task and Stimuli
The design was based on the alternating-runs paradigm used by 

Rogers and Monsell (1995). Two tasks were used: a letter classifi-
cation task (Task L) and a digit classification task (Task D). The 
participants classified letters as either a vowel (A, E, I, U) or a con-
sonant (G, K, M, R) and digits as either odd (3, 5, 7, 9) or even (2, 
4, 6, 8). The stimuli for every trial consisted of a character randomly 
sampled from both task sets (e.g., A3). Within a block of trials, re-
sponses to the two tasks could be either congruent (both characters 
required the same buttonpress) or incongruent (each character re-
quired a different buttonpress). Congruent responses occurred only 
12.5% of the time. Each response was made with an index finger, 
counterbalanced across participants. Responses were recorded using 
the left and right mouse buttons.

Trials moved clockwise around a 2 � 2 grid in a DDLLDDLL 
. . . sequence. The appropriate task was indicated by the location of 
the current trial within the grid (e.g., letter task � top squares; digit 

task � bottom squares), with the location to task mapping counter-
balanced across participants. Stimulus characters were presented in 
a white font on a black background on a 15-in. monitor at a viewing 
distance of 60 cm. The 2 � 2 grid was 30 characters wide and 13 
characters high. Square quadrants were defined within the grid.

Three RSIs were used for this experiment: 150, 600 and 
1,200 msec. The experiment was divided into two sessions: a blocked 
RSI session and a random RSI session. In the blocked session, the 
RSI remained constant within each block of trials (cf. Rogers & 
Monsell, 1995, Experiment 3), and each RSI block occurred twice 
for six blocks in total. The order of RSI presentation was counterbal-
anced across participants. In the random session, RSI varied within 
a block of trials (cf. Rogers & Monsell, 1995, Experiment 2), and 
all three RSI values were presented equally often in a random order. 
Six blocks were presented during this session. In total, the experi-
ment comprised 12 blocks with 100 trials each (4 warm-up � 96 
experimental trials). Each block contained an equal number of trials 
for type (switch or nonswitch) and task (letter or digit).

Procedure
Each participant completed a 30-min practice session prior to 

the 50-min experimental session. The practice session included two 
shorter blocks (50 trials) of both tasks separately (letter task then 
digit task). Task instructions were displayed before each block and 
were visible during the practice trials. After each block, performance 
feedback was displayed, including accuracy and mean RT. Next, two 
blocks (600-msec RSI followed by 150-msec RSI) of task-switch 
trials were presented (100 trials). During these trials, only the task-
relevant character was displayed on the screen (i.e., only one char-
acter was used for each trial). The order of the remaining practice 
trials depended on session type (blocked or random). For the blocked 
session, two blocks (1,200-msec RSI followed by 150-msec RSI) 
of standard alternating-runs switch trials were presented (50 trials 
each). The stimuli for these trials were composed of characters from 
both task sets. For the random session, one block with randomly or-
dered RSIs of standard alternating-runs switch trials was presented 
(100 trials). All three RSIs were used for this block. Only the final 
practice block type was run at the start of the second session.

Prior to each block of the experimental session, instructions were 
displayed reminding the participants of the correct response map-
pings. The instructions were not visible during the experimental 
trials. Stimuli for the first 4 (warm-up) trials for each block were 
randomly chosen. Each stimulus was presented on the screen until a 
response was recorded or until 5,000 msec had passed. If an incor-
rect response was recorded or 5,000 msec had elapsed, a brief tone 
(750 Hz) sounded for 200 msec before the onset of the following 
task. The participants were encouraged to prepare for the upcoming 
task and to respond to the task-relevant character as soon as pos-
sible while maintaining high accuracy. Feedback on performance 
for the previous three blocks was given at the end of each block. The 
participants were encouraged to take short breaks at the end of each 
block if they wished.

RESULTS

To test the fixed-point property, we needed to estimate 
RT distributions. This required stationary data, to meet the 
assumption of standard estimation procedures. We care-
fully censored our data to help meet this assumption. Data 
from the practice session were discarded, as were data 
from the first 4 trials in each block of the experimental 
session. We also censored RTs associated with incorrect 
responses and RTs from responses immediately following 
an error. Finally, our experiment included several blocks 
in which different RSI values were randomly mixed across 
trials. These were included in the experiment for a differ-

Figure 2. Falmagne’s (1968) fixed-point property as it applies 
to the FTE theory. PDFs produced from different levels of pre-
paredness must share a common crossing point.
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ent purpose; hence, they are not analyzed below. Mixed 
RSI blocks typically lead to different patterns of switch 
cost reduction than do uniform RSI blocks (e.g., see Ex-
periments 2 and 3 of Rogers & Monsell, 1995). After 
censoring, each participant contributed between 833 and 
1,134 data points, or around 70 to 95 data points per RT 
distribution, to the analyses below.

Task-Switching Effects
As expected, longer RSI was associated with smaller 

RT and with lower switch costs (see Table 1).
For the letter task, the mean switch cost in RT decreased 

from 379 msec at the shortest RSI to 334 msec at the me-
dium RSI and 265 msec at the longest. For the digit task, 
the switch costs decreased from 441 msec to 354 msec 
and then to 251 msec. These effects were statistically reli-
able: A repeated measures ANOVA2 showed a main ef-
fect of RSI [F(2,38) � 6.7, MSe � 10,149, p � .01], a 
main effect of switch versus nonswitch trials [F(1,19) � 
89, MSe � 37,841, p � .001], and an interaction effect 
[F(2,38) � 16, MSe � 3,545, p � .001]. There was also 
a tendency for nonmonotonicity with RSI in RT for non-
switch trials. This tendency was not significant but did 
appear in both letter and digit tasks (and has been seen in 
other studies; e.g., Monsell, 2003, Figure 2).

The accuracy data in Table 2 show that the participants 
were able to maintain a relatively constant accuracy rate 
across the two tasks and across RSI, as instructed. There 
was a large and reliable switch cost in accuracy [94.3% 
for switch trials vs. 97.9% for nonswitch trials; F(1,19) � 
31, MSe � 0.001192, p � .001]. No other ANOVA effects 
were significant for accuracy data. This shows that the 
participants were relatively successful at maintaining a 
constant error rate across tasks and RSI, forcing effects 
into RT rather than accuracy.

Figure 3 shows cumulative distribution functions 
(CDFs) averaged across participants. These functions 
show similar patterns to those previously observed by 
De Jong (2000, his Figure 15.2) and others—patterns 
that have been interpreted as support for the FTE theory. 
In both letter and digit tasks, the CDFs corresponding to 
the long- and medium-RSI switch conditions (solid lines, 
filled triangles, and circles) begin closest to the nonswitch 
CDFs in the lower left corner of the plot, and they end 
closest to the long-RSI switch conditions in the upper 
right corner. This pattern is consistent with a mixture 
model: The fastest responses in these two intermediate 
conditions are similar to the fastest responses in the fast-

est condition, and the longest responses are similar to the 
longest responses in the slowest condition.

Although the patterns observed in Figure 3, and by oth-
ers, are consistent with a mixture model such as the FTE 
theory, they do not provide unequivocal support. These 
CDFs are averaged across participants. This averaging 
process could have distorted the shape of the CDFs, unless 
the individual CDFs all belonged to the same location-
scale family (see Brown & Heathcote, 2003).

Distribution Crossing Points
All distribution-estimation and crossing-point analy-

ses were carried out on unaveraged, individual data. For 
each participant, data were separated into 12 conditions 
using factorial combinations of digit tasks and letter tasks, 
switch trials and nonswitch trials, and the three RSI lev-
els. For each of these 12 data conditions, separately for 
each participant, an empirical estimate of the PDF was 
calculated using a standard kernel density estimator. Ker-
nel density estimation can be thought of as a continuous 
version of the histogram. The most succinct description is 
mathematical: Given data {x1, . . ., xN}, the height of the 
density estimate at point t is given by
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The value h refers to a bandwidth, and it governs the 
amount of smoothing—analogous to the bin width of a 
histogram. The function f refers to the kernel and can be 
any density function with unit integral (we chose the stan-
dard normal density). A comparison with standard histo-
gram estimation may make this equation clearer for the 
reader new to density estimation. When constructing a 
histogram, each observation, xi, adds one unit of height to 
the histogram in the binning interval covering that obser-
vation. A kernel density estimator makes the notion of bin 
intervals continuous and graded, rather than discrete and 
absolute. So observation xi will add quite a lot of height 
to the estimated density at the value xi and add less height 
at values nearby and will have almost no effect at values 
far from xi. Standard texts on kernel density estimation 
are plentiful (see, e.g., Fan & Gijbels, 1996; Silverman, 
1986; or Van Zandt, 2000, for an introduction specific to 
RT distributions).

For each condition, we calculated density estimates at 
1,024 evenly spaced points between 400 and 2,000 msec 
using a Gaussian kernel with a bandwidth 1.25 times the 

Table 1
Mean Response Times (in Milliseconds) and Standard Deviations (SDs)

Letter Task Digit Task

Switch Trial Nonswitch Trial Switch Trial Nonswitch Trial

RSI (msec)  M  SD  M  SD  M  SD  M  SD

150 1,135 560 756 394 1,197 612 756 362
600 1,056 546 722 329 1,052 559 698 322

1,200  1,027  511  762  362  1,028  541  777  412

Note—RSI, response-to-stimulus interval.
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value given by Silverman’s (1986, p. 48) “rule of thumb” 
automatic bandwidth selector. This automatic bandwidth 
selection avoids subjective bias inherent in manual selec-
tion. The factor of 1.25 provided some “over smoothing,” 
which helped minimize problems associated with multiple 
PDF crossing points. Figure 4 shows estimated density 
functions averaged across all participants. The crossing 
points in these averaged plots should not be interpreted 
too carefully: Averaging such nonlinear functions across 
participants can cause great distortions in functional form 
and, hence, crossing-point locations. There is no method 
available for averaging density functions that avoids 
these problems of distortion (see, e.g., Brown & Heath-
cote, 2003; Rouder & Speckman, 2004). It is tempting to 
draw conclusions from the averaged PDF plots: For in-
stance, in the consonant–vowel task (left plot), it seems 
that the short-RSI nonswitch trials (solid gray line) are 
shifted longer relative to the medium-RSI nonswitch tri-
als (dashed line) by about 50 msec. This effect would also 
shift the crossing points for the short-RSI nonswitch con-
dition with the other switch distributions—an effect that 
is incompatible with a binary mixture model such as the 
FTE. However, it is dangerous to interpret such highly 
averaged data; therefore, we focus below on analyses of 
crossing points calculated from individual participants’ 
PDFs only.

After estimating the 12 densities for each participant, 
we located the distribution crossing points. For each task 
(letter and digit), there were six distributions, leading to 
15 unique distribution pairs for which crossing points 
could be calculated. We used only 12 of these: The FTE 

theory may predict perfect engagement on nonswitch tri-
als, so the three different RSI conditions may be predicted 
to lead to identical nonswitch RT distributions and, hence, 
ill-defined crossing points.

It was possible that each of the remaining 12 distribu-
tion pairs for the letter task and the digit task had multiple 
crossing points. To overcome this, we always selected the 
crossing point closest to the midpoint between the modes 
of the estimated distributions. The midpoint between 
modes is associated with higher data density and, hence, 
better estimation accuracy. Choosing the cross point this 
way also avoids a problem that arises when distributions 
are very similar. If two distributions are identical, their 
crossing point is any arbitrary value at all. If the distribu-
tions are very similar, they will cross at numerous points. 
Our use of a fixed algorithm to choose just one of those 
points in a reliable manner reduces this variability. This 
avoids the identification of spurious differences in cross 
points due to comparison of very similar distributions. 
Figure 5 shows the averages of the 12 crossing points for 
the letter and digit tasks, with error bars corresponding to 
standard error of the mean (SEM ) across participants.

There appears to be large and systematic variability in 
the crossing points illustrated in Figure 5. For example, 
the crossing points of shorter RSI switch distributions 
with longer RSI nonswitch distributions (horizontally 
shaded bars) are always longer than other crossing points. 
We calculated a two-way repeated measures ANOVA on 
the estimated crossing points, using digit/letter and dis-
tribution pair (the 12 conditions in Figure 5) as factors. 
Cross points for letter data were a little faster (837 msec) 

Table 2
Mean Accuracy (%)

Letter Task Digit Task

RSI (msec)  Switch Trial  Nonswitch Trial  Switch Trial  Nonswitch Trial

150 95.3 99.0 93.6 97.5
600 96.2 92.8 98.0 96.8

1,200  94.6  93.7  98.8  97.0

Note—RSI, response-to-stimulus interval.

Figure 3. Averaged cumulative distribution functions. Quantile RTs (5%, 10%, . . . , 95%) were calculated for each 
subject separately and then were averaged. Solid lines and filled symbols represent data for switch trials; dashed lines 
and open symbols represent data for nonswitch trials. Data for the short-RSI condition are plotted with squares; data for 
the medium-RSI condition are plotted with circles; data for the long-RSI condition are plotted with triangles.
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than for digit data (858 msec), but this trend was not sig-
nificant [F(1,19) � 1, MSe � 100,611]. Confirming the 
trend from Figure 5, the effect of distribution pair was 
highly significant [F(11,209) � 3.6, MSe � 27,841, p � 
.01]. There was no significant interaction [F(11,209) � 1, 
MSe � 17,856]. Separate one-way ANOVAs for the digit 
task and the letter task showed that the crossing-point dif-
ferences were significant for both [digit task, F(11,209) � 
2.8, MSe � 27,756, p � .01; letter task, F(11,209) � 2.2, 
MSe � 20,941, p � .05].

Finally, we calculated a simpler, but less powerful, test 
of whether the cross points differed for the different distri-
bution pairs.3 As a referent, we calculated the cross point 
of the fastest distribution (nonswitch, RSI � 1,200 msec) 

with the slowest distribution (switch, RSI � 150 msec). 
This pair of distributions was most widely separated, and 
so these cross points were subject to smaller estimation 
error. Then, for each of the remaining 11 distribution pair-
ings, one can ask whether those cross points fall systemat-
ically above or below the referent cross points. If the FTE 
theory is correct, and the distributions arise from a binary 
mixture, then the crossing points should be identical and 
the remaining cross points should fall equally often above 
and below the referent points, due to measurement noise. 
According to the binomial distribution, there is less than 
p � .05 combined probability of observing fewer than 8 
or more than 13 cross points falling above the referent. 
In our data, we observed cross points falling above the 

Figure 4. Density estimates averaged across participants. The left panel shows letter task data; the 
right panel shows digit task data. Distributions from nonswitch trials are shown in gray; distributions 
from switch trials are shown in black. Long-RSI (1,200-msec) distributions are drawn with dotted lines; 
medium-RSI (600-msec) distributions are drawn with dashed lines; short-RSI (150-msec) distributions 
are drawn with solid lines.
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referent for 3 of the 24 distribution pairs (2 of 11 for letter 
data and 1 of 11 for digit data) and below the referent for 
1 distribution pair (in the digit task). Observing these 4 of 
24 instances outside the 95% confidence interval is more 
than the rate expected by chance.

DISCUSSION

The analysis of distribution crossing points provides 
evidence against the FTE model of task switching. If task-
switching behavior actually was generated by a simple 
binary mixture process, the observed distributions would 
all have crossed at a common RT value, and the ANOVAs 
would have shown no significant effects of distribution 
pair. This was not the case. There were highly significant 
overall effects of distribution pair on crossing point, and 
these effects were reliable even when analyzing crossing 
points from the digit task or letter task alone. The FTE 
model cannot accommodate the present results without 
modification. There are several ways the model could be 
changed to avoid making the fixed-point prediction. For 
example, Falmagne’s (1968) fixed-point property applies 
only to binary mixture models. If the mixture mechanism 
in the FTE model included more than just the two states of 
“prepared” and “unprepared,” our test would not apply.

Rescuing the Mixture Assumption
The most interesting aspect of the FTE theory is the as-

sumption that preparation for task switching is all-or-none 
and, hence, that observed RT distributions are formed by 
a binary mixture process. Falmagne’s (1968) fixed-point 
test rules out the simplest binary mixture model but does 
not rule out the all-or-none assumption, because other, 
more complex, binary mixture models may still be ten-
able. The fixed-point test applies only to the simplest form 
of the FTE theory, which is the version currently in use 
(De Jong, 2000; Nieuwenhuis & Monsell, 2002). This 
version of the FTE theory asserts that nothing changes 
between different RSI conditions or between switch and 
nonswitch trials—conditions except for the mixture prob-
ability, α. Relaxing this assumption frees the FTE theory 
from making the strict fixed-point prediction. Below, we 
examine an extension of the FTE theory that makes a less 
stringent fixed-point prediction—a prediction supported 
by our data.

It is common in RT paradigms to observe shifts in RT 
distributions with variable foreperiods4 (see, e.g., Luce, 
1986). Thus, it may be reasonable to generalize the FTE 
theory to allow the prepared and unprepared mixing dis-
tributions to shift with RSI (we will call the FTE theory 
when amended in this manner the shift-FTE theory). The 
shift-FTE theory does not make the fixed-point predic-
tion of Falmagne (1965). For each task (letter and digit), 
the shift-FTE theory can be defined by two extra param-
eter values: a shift for the medium-RSI condition relative 
to the short-RSI condition, and a shift for the long-RSI 
condition relative to the short-RSI condition. If the shift 
sizes are known, the observed data can be “unshifted” by 
subtraction. These unshifted data then are subject to the 

fixed-point test of Falmagne, even though the raw data are 
not. This provides a stringent test of the shift-FTE theory.

We tested the shift-FTE theory in our data by estimating 
the shift parameters and then testing for the fixed-point 
property in the unshifted data. We estimated four shift 
parameters separately for each participant. These param-
eters describe the shift of the mixing distributions for the 
medium- and long-RSI conditions relative to the short-
RSI condition, separately for the letter and digit tasks. 
We estimated the shift parameters using a simplex search 
(Nelder & Mead, 1965) to minimize the variability of the 
crossing points in the unshifted data. In the letter task, the 
average (across participants) estimated shift parameter for 
the medium-RSI condition was 14 msec (i.e., the prepared 
and unprepared mixing distributions were assumed to be 
14 msec faster in the medium-RSI condition relative to 
the short-RSI condition). The long-RSI mixing distribu-
tions were estimated to be an average of 8.6 msec slower 
than the short-RSI mixing distributions. Note that this es-
timated slowdown in the long-RSI condition matches the 
observed slower mean RT for long-RSI nonswitch trials 
(see Table 1). For the letter task, the mixing distributions 
for the medium-RSI condition were estimated to be al-
most identical to those for the short-RSI condition, with 
an average shift of only 1 msec. The long-RSI mixing dis-
tributions were estimated to be 25 msec slower than the 
short-RSI mixing distributions.

Although the mean estimated shift parameters were 
small, they were sufficient to rescue the shift-FTE the-
ory and allow it to accommodate the observed pattern of 
crossing points. We calculated the crossing points for the 
unshifted data in the same manner as above, after subtrac-
tion of the estimated shift parameters from the observed 
data. Figure 6 shows the mean crossing points for the 
unshifted data, using the same format and y-scale as in 
Figure 5. The crossing points for the unshifted data ap-
pear to at least approximately satisfy Falmagne’s (1965) 
fixed-point property—the variability in bar heights from 
Figure 6 is much smaller than the raw data crossing points 
from Figure 5.

As with the raw data above, we calculated a two-way 
ANOVA (distribution pair/letter vs. digit task) on the 
crossing points from the unshifted data. There was no sig-
nificant variability in the crossing points attributed to any 
of the ANOVA terms [main effect of letter vs. digit task, 
F(1,19) � 1.1, MSe � 103,170, p � .1; main effect of dis-
tribution pair, F(11,209) � 1, MSe � 29,985; interaction, 
F(11,209) � 1, MSe � 18,119]. The separate one-way 
ANOVAs for the digit task and the letter task both showed 
nonsignificant effects of distribution pair this time (both 
Fs � 1). We also recalculated the binomial test used above 
and found a marked improvement. We observed only 2 of 
24 distribution pairs outside the 95% confidence interval. 
This is in contrast to the 4 of 24 observed for the raw data 
and is close to the rate expected by chance (1.2 of 24).

Our analysis of the shift-FTE theory demonstrates that 
the all-or-none preparation hypothesis of FTE is still ten-
able, as is the accompanying mixture hypothesis. There 
are many other ways the FTE theory could be amended to 
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accommodate our findings—perhaps by the addition of a 
third process or by allowing distribution shape, rather than 
location, to vary with RSI. Each of these changes to the 
FTE theory can be tested, as above, by estimating the dis-
tribution change parameters and then applying Falmagne’s 
(1968) fixed-point test. The shift-FTE theory can be tested 
even more directly, however. This theory predicts that the 
basic fixed-point property of Falmagne will hold true if 
the mixing probability (α) is manipulated by some experi-
mental manipulation other than RSI. For example, a future 
experiment could adjust mixing probability by changes 
in rewards or other incentives, and the shift-FTE theory 
would predict a fixed point in the observed distributions.
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NOTES

1. The proof is elementary: Suppose the PDFs of two mixing distribu-
tions are f (x) and g(x), and f ( y) � g( y) for some y. The PDF of an α 
mixture of f and g is given by w(x) � αf (x) � (1�α)g(x), and so w( y) � 
αf ( y) � (1�α)g( y) � f ( y), by assumption.

2. We collapsed across letter and digit task data for simplicity of expo-
sition. Similar results were obtained on data from each task separately.

3. We thank an anonymous reviewer for suggesting this.
4. We thank W. Trammell Neill for reminding us of this fact.
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Figure 6. Mean crossing-point RT (in milliseconds) for 12 unshifted distribution pairs each from the letter task and the digit task. 
Error bars show �SEM across participants. Order of the bars is the same as that in Figure 5.
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