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Abstract	
  
	
  
Jones	
  and	
  Dzhafarov	
  (2013)	
  provide	
  a	
  useful	
  service	
  in	
  pointing	
  out	
  that	
  some	
  

assumptions	
  of	
  modern	
  decision-­‐making	
  models	
  require	
  additional	
  scrutiny.	
  

Their	
  main	
  result,	
  however,	
  is	
  not	
  surprising:	
  if	
  an	
  infinitely	
  complex	
  model	
  were	
  

created	
  by	
  assigning	
  its	
  parameters	
  arbitrarily	
  flexible	
  distributions,	
  this	
  new	
  

model	
  would	
  be	
  able	
  to	
  fit	
  any	
  observed	
  data	
  perfectly.	
  Such	
  a	
  hypothetical	
  

model	
  would	
  be	
  unfalsifiable.	
  This	
  is	
  exactly	
  why	
  such	
  models	
  have	
  never	
  been	
  

proposed	
  in	
  over	
  half	
  a	
  century	
  of	
  model	
  development	
  in	
  decision-­‐making.	
  

Additionally,	
  the	
  main	
  conclusion	
  drawn	
  from	
  this	
  result	
  –that	
  the	
  success	
  of	
  

existing	
  decision-­‐making	
  models	
  can	
  be	
  attributed	
  to	
  assumptions	
  about	
  

parameter	
  distributions–	
  is	
  wrong.	
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Models	
  of	
  Speeded	
  Decision-­‐Making	
  Are	
  Highly	
  Constrained	
  
	
  
	
  
Modern	
  decision-­‐making	
  models	
  have	
  been	
  used	
  to	
  uncover	
  new	
  insights	
  about	
  

brain	
  and	
  behavior	
  in	
  dozens	
  of	
  different	
  paradigms	
  requiring	
  choice	
  among	
  two	
  

(e.g.,	
  Ratcliff, & McKoon, 2008)	
  or	
  more	
  (e.g.,	
  Busemeyer & Diederich, 2002)	
  

options.	
  All	
  modern	
  models	
  share	
  a	
  common	
  and	
  simple	
  structure:	
  they	
  assume	
  

that	
  evidence	
  is	
  gradually	
  accumulated	
  from	
  the	
  environment	
  and	
  a	
  decision	
  is	
  

made	
  whenever	
  the	
  evidence	
  reaches	
  a	
  threshold	
  amount	
  (e.g.,	
  the	
  diffusion	
  

model:	
  Ratcliff	
  1978,	
  Ratcliff	
  &	
  Tuerlinckx,	
  2002;	
  and	
  the	
  linear	
  ballistic	
  

accumulator	
  model:	
  LBA,	
  Brown	
  &	
  Heathcote,	
  2008).	
  In	
  their	
  simplest	
  forms,	
  the	
  

models	
  have	
  three	
  central	
  parameters:	
  the	
  “drift	
  rate”	
  which	
  measures	
  how	
  fast	
  

evidence	
  accumulates;	
  a	
  “threshold”	
  which	
  measures	
  how	
  much	
  evidence	
  needs	
  

to	
  accumulate	
  before	
  a	
  decision	
  is	
  made;	
  and	
  “non-­‐decision	
  time”,	
  which	
  

measures	
  how	
  much	
  time	
  is	
  taken	
  up	
  by	
  processes	
  other	
  than	
  decision-­‐making,	
  

such	
  as	
  the	
  time	
  taken	
  to	
  push	
  a	
  response	
  button.	
  

	
  

Over	
  the	
  past	
  fifty	
  years	
  (since	
  Stone,	
  1960),	
  the	
  most	
  basic	
  versions	
  of	
  these	
  

models	
  have	
  been	
  proven	
  incomplete.	
  For	
  example,	
  the	
  earliest	
  version	
  of	
  the	
  

model,	
  described	
  above,	
  successfully	
  predicted	
  the	
  general	
  shape	
  of	
  response	
  

time	
  distributions,	
  and	
  the	
  tradeoff	
  between	
  urgent	
  vs.	
  cautious	
  decisions,	
  and	
  

even	
  some	
  fine	
  details	
  of	
  response	
  time	
  distributions	
  such	
  as	
  hazard	
  rates.	
  

However,	
  these	
  early	
  versions	
  made	
  such	
  highly	
  constrained	
  predictions	
  that	
  

they	
  were	
  unable	
  to	
  accommodate	
  patterns	
  of	
  differing	
  speed	
  between	
  incorrect	
  

and	
  correct	
  responses;	
  patterns	
  which	
  were	
  regularly	
  observed	
  in	
  data	
  when	
  

participants	
  are	
  told	
  to	
  respond	
  quickly	
  (e.g.,	
  Ratcliff	
  &	
  Rouder,	
  1998).	
  These	
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limitations	
  have	
  informed	
  model	
  development,	
  and	
  modern	
  response	
  time	
  

models	
  include	
  two	
  key	
  elements	
  that	
  address	
  these	
  earlier	
  limitations:	
  they	
  

assume	
  that	
  the	
  drift	
  rate	
  varies	
  randomly	
  from	
  decision	
  to	
  decision,	
  and	
  also	
  

that	
  the	
  starting	
  point	
  of	
  the	
  evidence	
  accumulation	
  process	
  varies	
  randomly	
  

from	
  decision	
  to	
  decision.	
  The	
  distributions	
  assumed	
  for	
  the	
  trial-­‐to-­‐trial	
  

variability	
  of	
  the	
  drift	
  rate	
  and	
  start	
  point	
  have	
  always	
  been	
  simple	
  forms	
  with	
  

one	
  additional	
  free	
  parameter.	
  The	
  interested	
  reader	
  will	
  find	
  a	
  detailed	
  history	
  

of	
  the	
  development	
  of	
  response	
  time	
  models,	
  and	
  the	
  implications	
  for	
  model	
  

constraint	
  and	
  falsifiability,	
  in	
  the	
  supplementary	
  material	
  to	
  this	
  comment.1	
  	
  

	
  

Jones	
  and	
  Dzhafarov’s	
  (2013)	
  Central	
  Result:	
  Infinitely	
  Complex	
  Models	
  Can	
  
Be	
  Unfalsifiable	
  
	
  
	
  
Jones	
  and	
  Dzhafarov’s	
  (2013)	
  main	
  result	
  extends	
  earlier	
  work	
  by	
  Townsend	
  

(1976),	
  Marley	
  and	
  Colonius	
  (1992),	
  and	
  Dzhafarov	
  (1993).	
  The	
  key	
  idea	
  is	
  that,	
  

if	
  one	
  allows	
  unbounded	
  complexity	
  and	
  freedom	
  in	
  the	
  across-­‐trial	
  distribution	
  

of	
  drift	
  rates,	
  the	
  model	
  can	
  perfectly	
  fit	
  any	
  and	
  all	
  data	
  sets.	
  This	
  is	
  intuitively	
  

obvious	
  –	
  for	
  example,	
  if	
  the	
  threshold	
  was	
  set	
  at	
  1.0	
  (i.e.,	
  1	
  unit	
  of	
  evidence	
  

required	
  to	
  trigger	
  a	
  decision)	
  and	
  the	
  drift	
  rate	
  distribution	
  happened	
  to	
  

perfectly	
  invert	
  the	
  observed	
  data	
  (i.e.,	
  each	
  observed	
  RT	
  corresponded	
  to	
  a	
  drift	
  

rate	
  sample	
  of	
  1/RT),	
  then	
  the	
  “predicted”	
  data	
  from	
  the	
  model	
  would	
  perfectly	
  

match	
  the	
  observed	
  data.	
  Jones	
  and	
  Dzhafarov’s	
  (2013)	
  theorems	
  formalize	
  this	
  

intuition.	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The supplement addresses in detail specific claims about (1) a lack of empirical support for the LBA 
and diffusion models; (2) the flexibility and testing of the LBA and diffusion models; (3) positions held 
by authors of evidence accumulation models about the status of different assumptions made by their 
models; and (4) the supposed special status of distributional assumptions over other assumptions.	
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It	
  is	
  not	
  surprising	
  that	
  allowing	
  infinite	
  complexity	
  in	
  a	
  model	
  makes	
  it	
  

unfalsifiable.	
  This	
  is	
  not	
  unique	
  to	
  decision-­‐making	
  or	
  response	
  time	
  models,	
  but	
  

applies	
  to	
  all	
  models.	
  	
  For	
  example,	
  it	
  is	
  trivial	
  to	
  see	
  that	
  signal	
  detection	
  theory	
  

can	
  perfectly	
  fit	
  any	
  pattern	
  of	
  hit	
  and	
  false	
  alarm	
  rates,	
  if	
  one	
  allows	
  unbounded	
  

freedom	
  in	
  how	
  the	
  parameters	
  (d’	
  and	
  bias)	
  change	
  across	
  conditions.	
  Similarly,	
  

a	
  linear	
  regression	
  model	
  with	
  an	
  unlimited	
  number	
  of	
  predictors	
  will	
  fit	
  any	
  

data	
  at	
  all.	
  

	
  

This	
  kind	
  of	
  result	
  does	
  not	
  make	
  signal	
  detection	
  theory	
  or	
  linear	
  regression	
  

any	
  less	
  useful;	
  rather	
  it	
  means	
  that	
  researchers	
  should	
  limit	
  the	
  complexity	
  of	
  

models	
  instantiated	
  within	
  these	
  frameworks.	
  This	
  is	
  exactly	
  what	
  has	
  always	
  

happened	
  in	
  practice	
  with	
  decision-­‐making	
  models.	
  Researchers	
  have	
  never	
  

proposed	
  arbitrary	
  and	
  complex	
  distributions	
  for	
  across	
  trial	
  variability,	
  but	
  

have	
  always	
  restricted	
  themselves	
  to	
  highly	
  constrained	
  and	
  extremely	
  simple	
  

distributions,	
  such	
  as	
  the	
  uniform	
  distribution	
  (for	
  start	
  points)	
  or	
  the	
  Gaussian	
  

distribution	
  (for	
  drift	
  rates).	
  The	
  central	
  result	
  of	
  Jones	
  and	
  Dzhafarov	
  (2013),	
  

while	
  entirely	
  correct	
  for	
  hypothetical,	
  unrealistic	
  models,	
  applies	
  to	
  no	
  actual	
  

model	
  that	
  has	
  ever	
  been	
  proposed.	
  

	
  

It	
  is	
  true	
  that	
  the	
  particular	
  forms	
  of	
  the	
  across-­‐trial	
  variability	
  parameters	
  in	
  

decision-­‐making	
  models	
  (Gaussian	
  and	
  uniform)	
  were	
  originally	
  chosen	
  

arbitrarily,	
  for	
  practical	
  and	
  not	
  theoretical	
  reasons.	
  However,	
  since	
  these	
  forms	
  

were	
  chosen	
  in	
  the	
  original	
  model	
  development,	
  they	
  have	
  been	
  fixed	
  in	
  the	
  

dozens	
  or	
  hundreds	
  of	
  applications	
  of	
  the	
  models	
  since.	
  This	
  constitutes	
  a	
  

rigorous	
  test	
  of	
  the	
  models.	
  The	
  simple	
  forms	
  chosen	
  for	
  across-­‐trial	
  variability	
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result	
  in	
  falsifiable	
  models	
  that	
  could	
  easily	
  have	
  failed	
  to	
  fit	
  new	
  data,	
  many	
  

times	
  over,	
  but	
  this	
  has	
  not	
  happened.	
  In	
  other	
  words,	
  if	
  the	
  precise	
  shape	
  of	
  the	
  

across-­‐trial	
  distributions	
  had	
  been	
  crucial	
  for	
  the	
  model’s	
  success	
  in	
  fitting,	
  one	
  

would	
  expect	
  these	
  shapes	
  to	
  differ	
  from	
  experiment	
  to	
  experiment	
  (or	
  even	
  

across	
  subjects	
  or	
  conditions)	
  in	
  order	
  to	
  accommodate	
  the	
  idiosyncrasies	
  of	
  

different	
  data.	
  In	
  reality,	
  the	
  models	
  have	
  managed	
  to	
  provide	
  an	
  excellent	
  

account	
  of	
  hundreds	
  of	
  data	
  sets	
  and	
  thousands	
  of	
  participants	
  using	
  exactly	
  the	
  

same	
  distributional	
  shapes.	
  

	
  

What	
  are	
  the	
  Implications	
  for	
  Real	
  Decision-­‐Making	
  Models?	
  
	
  
	
  
An	
  important	
  conclusion	
  drawn	
  from	
  Jones	
  and	
  Dzhafarov’s	
  (2013)	
  main	
  result	
  

and	
  stated	
  prominently	
  on	
  the	
  front	
  page	
  is	
  that	
  “the	
  explanatory	
  or	
  predictive	
  

content	
  of	
  these	
  models	
  is	
  determined	
  …	
  by	
  distributional	
  assumptions”.	
  This	
  is	
  a	
  

mistaken	
  conclusion	
  that	
  does	
  not	
  follow	
  from	
  the	
  central	
  result.	
  Jones	
  and	
  

Dzhafarov	
  showed	
  that	
  a	
  new	
  model	
  formed	
  by	
  allowing	
  infinite	
  complexity	
  in	
  

the	
  drift	
  rate	
  distribution	
  could	
  be	
  unfalsifiable.	
  This	
  does	
  not	
  imply	
  the	
  standard	
  

model’s	
  falsifiability	
  was	
  entirely	
  due	
  to	
  its	
  assumptions	
  about	
  drift	
  rate.	
  	
  

	
  

The	
  problem	
  with	
  concluding	
  that	
  drift	
  rate	
  assumptions	
  are	
  the	
  key	
  to	
  the	
  

standard	
  models’	
  falsifiability	
  is	
  that	
  allowing	
  infinite	
  flexibility	
  in	
  drift	
  rate	
  

distributions	
  is	
  sufficient	
  to	
  create	
  an	
  unfalsifiable	
  model,	
  but	
  it	
  is	
  not	
  necessary.	
  

There	
  are	
  almost	
  as	
  many	
  ways	
  to	
  make	
  a	
  model	
  unfalsifiable	
  as	
  there	
  are	
  

parameters	
  in	
  the	
  model:	
  almost	
  any	
  parameter,	
  if	
  endowed	
  with	
  infinitely	
  

flexible	
  distributional	
  assumptions,	
  can	
  result	
  in	
  a	
  new	
  model	
  that	
  is	
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unfalsifiable.	
  For	
  example,	
  if	
  one	
  allowed	
  infinite	
  complexity	
  in	
  the	
  distribution	
  

of	
  non-­‐decision	
  time,	
  the	
  model	
  could	
  fit	
  any	
  response	
  time	
  data	
  at	
  all	
  (e.g.,	
  by	
  

assuming	
  that	
  the	
  distribution	
  of	
  non-­‐decision	
  time	
  was	
  exactly	
  the	
  observed	
  

data	
  distribution,	
  and	
  that	
  the	
  time	
  taken	
  for	
  the	
  decision	
  process	
  was	
  zero).	
  

Similarly,	
  if	
  one	
  allowed	
  infinite	
  complexity	
  in	
  the	
  distribution	
  of	
  start	
  points,	
  the	
  

model	
  could	
  fit	
  any	
  data	
  at	
  all	
  (e.g.,	
  by	
  assuming	
  a	
  constant	
  drift	
  rate	
  of	
  1.0,	
  a	
  

threshold	
  of	
  zero,	
  zero	
  non-­‐decision	
  time	
  and	
  a	
  start	
  point	
  distribution	
  that	
  was	
  

exactly	
  the	
  negative	
  of	
  the	
  observed	
  data).	
  Similar	
  arguments	
  can	
  be	
  made	
  about	
  

most	
  parameters	
  of	
  a	
  model,	
  from	
  the	
  shape	
  of	
  the	
  evidence	
  accumulation	
  curve	
  

to	
  the	
  location	
  of	
  the	
  threshold.	
  

	
  

These	
  trivial	
  examples	
  illustrate	
  the	
  mistake	
  of	
  according	
  special	
  status	
  to	
  the	
  

drift	
  rate	
  assumptions	
  (or	
  any	
  single	
  assumption).	
  Rather,	
  a	
  model’s	
  predictive	
  

content	
  is	
  determined	
  by	
  all	
  of	
  its	
  assumptions	
  together,	
  and	
  it	
  is	
  wrong	
  to	
  assign	
  

special	
  status	
  to	
  particular	
  assumptions	
  about	
  across-­‐trial	
  variability.	
  

Confusingly,	
  Jones	
  and	
  Dzhafarov	
  appear	
  to	
  come	
  to	
  exactly	
  this	
  same	
  

conclusion,	
  but	
  rather	
  less	
  prominently	
  (on	
  p.48):	
  	
  “one	
  needs	
  to	
  consider	
  both	
  

distributional	
  and	
  structural	
  assumptions	
  jointly”.	
  Our	
  supplementary	
  material	
  

further	
  explores	
  the	
  tension	
  in	
  Jones	
  and	
  Dzhafarov’s	
  article	
  between	
  the	
  idea	
  

that	
  all	
  model	
  assumptions	
  matter	
  equally,	
  vs.	
  the	
  idea	
  that	
  one	
  particular	
  model	
  

assumption	
  carries	
  all	
  the	
  predictive	
  power.	
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Conclusions	
  
	
  
	
  
In	
  a	
  provocative	
  and	
  mathematically	
  sound	
  article,	
  Jones	
  and	
  Dzhafarov	
  (2013)	
  

have	
  proposed	
  hypothetical	
  response	
  time	
  models	
  with	
  infinite	
  complexity	
  in	
  

distributional	
  shape,	
  and	
  shown	
  that	
  these	
  models	
  are	
  unfalsifiable.	
  This	
  

conclusion	
  corroborates	
  current	
  practice	
  that	
  eschews	
  such	
  models	
  in	
  favor	
  of	
  

models	
  that	
  are	
  highly	
  constrained	
  in	
  distributional	
  shape.	
  Despite	
  their	
  

constraints,	
  these	
  realistic	
  models	
  have	
  consistently	
  yielded	
  good	
  fits	
  to	
  many	
  

data	
  sets	
  across	
  a	
  range	
  of	
  different	
  paradigms,	
  without	
  changes	
  in	
  the	
  

distributional	
  assumptions	
  across	
  hundreds	
  of	
  experiments	
  and	
  thousands	
  of	
  

participants.	
  The	
  empirical	
  success	
  of	
  realistic,	
  constrained	
  models	
  shows	
  that	
  

the	
  explanatory	
  and	
  predictive	
  content	
  of	
  realistic	
  response	
  time	
  models	
  is	
  not	
  

determined	
  by	
  distributional	
  assumptions.	
  	
  

	
  

In	
  summary,	
  Jones	
  and	
  Dzhafarov	
  (2013)	
  are	
  right	
  to	
  point	
  out	
  that	
  parameter	
  

distribution	
  assumptions	
  of	
  decision-­‐making	
  models	
  deserve	
  scrutiny,	
  but	
  that	
  

scrutiny	
  has	
  a	
  long	
  history	
  (e.g.,	
  Link & Heath, 1975) with	
  increased	
  recent	
  

activity	
  (e.g.,	
  Heathcote	
  &	
  Love,	
  2012,	
  Ratcliff,	
  2013,	
  see	
  supplementary	
  material	
  

for	
  more	
  details).	
  However,	
  we	
  conclude	
  that,	
  although	
  Jones	
  and	
  Dzhafarov’s	
  

main	
  results	
  are	
  important	
  for	
  hypothetical,	
  infinitely	
  complex	
  models	
  that	
  have	
  

never	
  been	
  proposed,	
  they	
  are	
  much	
  less	
  relevant	
  for	
  the	
  realistic	
  models	
  that	
  

are	
  used	
  in	
  actual	
  practice.	
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Supplement	
  to	
  “The	
  Falsifiability	
  of	
  Actual	
  Decision-­‐Making	
  Models”	
  

	
  

Jones and Dzhafarov (2013, hereafter J&D) reports work expanding the scope of 

previous results (Dzhafarov, 1993; Marley & Colonius, 1992; Townsend, 1976) on 

the universality of independent race models, models which assume that choices are 

made by accumulating evidence about different potential responses. Universality in 

this context refers to the ability of a model to account for any observed pattern of 

behavior in discrete choice experiments as characterized by response probabilities and 

response time (RT) distributions. J&D draws an alarming conclusion with respect to 

two evidence accumulation models that have been widely applied in psychology and 

the neurosciences: “Although the diffusion and LBA models have been highly 

successful in fitting data from a variety of task domains (e.g., Brown & Heathcote, 

2008; Ratcliff & Smith, 2004), this success does not imply any support for the 

theoretical or structural assumptions of these models.” (p.47) Does this mean J&D 

have shown that psychologists and neuroscientists have been misled, and that there is 

no empirical support for the LBA and diffusion2 models? We believe the answer is 

clearly no.  

 

Although the mathematical results in J&D are clear and precise, the inferences drawn 

from them are often unclear and imprecise in a way that sometimes misrepresents 

positions held by the authors of the diffusion, LBA, and other evidence accumulation 

models, and which has the potential to mislead future research. These problems go 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  A	
  variety	
  of	
  different	
  specific	
  models	
  have	
  been	
  proposed	
  that	
  share	
  the	
  assumption	
  evidence	
  
diffuses	
  (i.e.,	
  varies	
  from	
  moment-­‐to-­‐moment	
  in	
  the	
  continuous	
  case	
  or	
  sample-­‐to-­‐sample	
  in	
  the	
  
discrete	
  case),	
  beginning	
  with	
  the	
  seminal	
  work	
  of	
  Stone	
  (1960).	
  The	
  diffusion	
  model	
  as	
  studied	
  
in	
  J&D	
  is	
  elaborated	
  with	
  the	
  idea	
  of	
  three	
  types	
  of	
  trial-­‐to-­‐trial	
  variability	
  in	
  parameters.	
  We	
  
follow	
  J&D	
  in	
  calling	
  a	
  diffusion	
  model	
  with	
  uniform	
  variability	
  in	
  non-­‐decision	
  time	
  and	
  the	
  
starting	
  evidence	
  accumulation	
  value,	
  and	
  Gaussian	
  variability	
  in	
  the	
  mean	
  rate	
  of	
  accumulation	
  
–	
  the	
  most	
  widely	
  used	
  diffusion	
  model	
  over	
  the	
  last	
  decade	
  –	
  as	
  “the”	
  diffusion	
  model.	
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beyond the claim just recounted from J&D about 1) a lack of empirical support for the 

LBA and diffusion models; they also encompass unsupported and/or incorrect 

inferences about 2) the flexibility and testing of the LBA and diffusion models, 3) 

positions held by authors of evidence accumulation models about the status of 

different assumptions made by their models and 4) claims about the special status of 

distributional assumptions over other assumptions that together constitute these 

models. The distributional assumptions referred to in J&D are assumptions about the 

mathematical form of variability in model parameters from one trial to the next.  

 

The Special Status of Distributional Assumptions 

 

We examine the claim about the special status of distributional assumptions first as 

J&D is conflicted on this point. In the abstract it says: “the explanatory or predictive 

content of these models is determined not by their structural assumptions, but rather 

by distributional assumptions” (p.1). However, in the discussion it says: “one needs to 

consider both distributional and structural assumptions jointly” (p.48). We agree with 

the second statement, that it is the joint properties of all assumptions that are critical, 

and worry that the contradiction will confuse careful readers and, because of the 

prominence of the abstract, mislead casual readers. Distributional assumptions do not 

have a special status because it is only when they are combined with structural 

assumptions – assumptions about the way that evidence is processed and a choice 

made – that a model could make predictions about behavior.  

 

If anything it is a structural assumption, evidence accumulation to a threshold, which 

has a special status. This assumption states that one or more types of evidence are 
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accumulated over time, that each type has one or more associated thresholds, and that 

a response associated with a threshold is selected if its associated evidence total is the 

first to satisfy any threshold. Participants can set the threshold strategically to 

modulate response caution (i.e., to trade speed for accuracy or vise versa). One might 

see this assumption’s status as special because most of the modern literature on 

modeling choice RT, including J&D, does not question it. In contrast, the generality 

of the claim in J&D about the primacy for distributional assumptions is contradicted 

by Dzhafarov (1993). It shows universality for an arbitrary choice of threshold 

distribution by allowing complete flexibility in the form of a deterministic 

accumulation process. Hence, in Dzhafarov, who studied a type of evidence 

accumulation to threshold model called a Grice model (e.g., Grice, 1968, 1972), the 

form of the accumulation process (e.g., linear, exponential, sigmoid etc.) determines 

the model’s explanatory or predictive content, not distributional assumptions.  

 

In the context of the LBA model, which assumes linear deterministic accumulation, 

J&D shows that universality results by allowing complete flexibility in the 

distribution of rates of accumulation. In contrast to this model, which J&D names the 

gLBA, the LBA model is not universal because it assumes a specific form for the rate 

distribution (Gaussian) and a specific from for the distribution of points at which 

evidence accumulation starts (uniform). J&D states “universality of the gLBA … is a 

straightforward mathematical fact. However, its implications for the standard LBA 

seem to have been overlooked. Specifically, this result implies that the predictive 

power of the standard LBA lies in its assumptions regarding growth-rate and start-
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point distributions (which have heretofore been treated as implementation details)3” 

(p.18). Putting to one side that we find it unsurprising that implications for the 

standard LBA have been “overlooked” (after all the “mathematical fact” was first 

proved in J&D, and it is about a model that is not the standard LBA model but instead 

about a more general model that never been proposed or used by anyone but J&D), 

the implication drawn is clearly false; it is the joint effects of all assumptions in the 

standard LBA model, including linear accumulation, that determines its explanatory 

and predictive content.   

 

In summary, J&D states that its “core message … is that, when a modeling 

framework is universal, the predictive content of any model expressed in that 

framework lies in whatever falsifiable assumptions that model makes”. (p.33). We 

agree with this statement but not the implication that is immediately drawn: “For the 

standard LBA and diffusion models, these assumptions are the forms of the 

probability distributions for growth rate (Gaussian), starting points (uniform), and 

nondecision time (uniform, for the diffusion model)” (p.33). In contrast, we think that 

it is the joint effect of all of the model’s assumptions that determine its explanatory 

and predictive content.  

 

What does the evidence imply? 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  J&D also examines the effect on universality of two “selective influence” assumptions about the way 
model parameters can vary across stimuli and experimental conditions. J&D notes that of “the two 
selective influence assumptions made by the standard diffusion and LBA models, the first has no 
impact on universality, and the second is logically suspect and perhaps even psychologically unlikely.” 
(p.31). Recent research we have preformed applying both the diffusion and LBA (Rae, Heathcote, 
Donkin & Brown, submitted), as well as other research using only the diffusion, including papers cited 
in J&D as well as other work (Starns, Ratcliff, & White, 2012), supports the doubts raised on 
psychological grounds, and so we do not discuss selective influence assumptions further and omit 
mention of them in quotes for this reason.	
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What then of the claim in J&D that the success of the diffusion and LBA models in 

fitting data from a wide variety of task domains “does not imply any support for the 

theoretical or structural assumptions of these models” (p.47)? We think that this 

success does imply strong support for the combination of assumptions in each model 

(i.e., the model’s joint assumptions). Taken together, the assumptions make up 

models that could have been falsified. However this did not happen. Instead, the 

models provided good (but not perfect) descriptions of fine-grained details of 

behavior. They also provided a coherent account of that behavior in terms of latent 

psychological constructs with a clear correspondence to the model’s parameter 

estimates. That said, we do agree that the universality results in J&D have a more 

limited implication, that there is no necessary support for any assumption taken in 

isolation.  

 

How important is it that we find support for isolated assumptions, or perhaps even 

subsets of assumptions? J&D states: “Whenever a cognitive model provides a good 

account of empirical data, it is critical to understand which of its assumptions are 

responsible for its predictive success. Such understanding is important for theoretical 

progress and for generalizing to other paradigms or domains.” (p.46). In contrast, we 

do not see such an understanding as critical, and think that it is rarely if ever 

achievable in models of sufficient complexity to provide a realistically detailed 

account of empirical data. J&D goes on to state: “the assumptions of most formal 

models can be roughly divided into ones corresponding to theoretical principles the 

model is meant to embody, and technical details that are necessary to generate 

quantitative predictions but are chosen without theoretical consideration and can be 

modified or dispensed with as need arises.” (p.48). We think that J&D provides a 
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valuable service in extending the already existing demonstrations by Townsend 

(1976), Marley and Colonius (1992) and Dzhafarov (1993) that this rough division is 

indeed very rough in the context of evidence accumulation models, and so probably 

not a differentiation that is worth making in any strong sense. However, we see only a 

few examples in the past literature where this differentiation has been made, and do 

not believe that the field has been misled on this point. 

 

A very different perspective is offered in J&D. One of its concluding statements is 

that: “Mathematical modeling has produced models that often yield impressive fits to 

these data with relatively few free parameters. Nevertheless, the theoretical 

implications of these modeling results are far less certain than they have been made 

out to be. As we have shown here, the models’ predictions derive not from their 

structural assumptions but from technical aspects that have been considered irrelevant 

details”. (p.50) The “technical aspects” referred to are distributional assumptions, 

which are claimed to have “received little attention or justification” (p.13), a claim 

that is later repeated and elaborated, saying they have been treated as ‘being “merely” 

implementation details and not part of the underlying theory.’ (p.29). In support of 

distributional assumptions having been treated as “irrelevant” and “mere” 

implementation details J&D quotes Brown and Heathcote (2008, p.160) saying that 

they: “chose the normal distribution for practical reasons, because it is both tractable 

and conventional.”. J&D reasons: “If these distributional assumptions are only a 

matter of convenience and tradition, then they should not be considered a critical part 

of the psychological theory.” (pp.15-16).  

 

We think this reasoning in J&D confuses the origin of assumptions and their place in 
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a model. Both the diffusion and LBA models also make a linear accumulation 

assumption, so that assumption might also be characterized as conventional. The 

linear assumption in both models is also key for mathematical tractability. Indeed, 

Brown and Heathcote (2008) explicitly motivated the linear assumption as about 

tractability with reference to their BA model (Brown & Heathcote, 2005), where the 

combination of the same distributional assumptions with nonlinear accumulation is 

not mathematically tractable. The LBA assumption of an independent race, with each 

racer having its own response threshold, has its basis in a long history of independent 

race model applications (e.g., Vickers, 1979) and in mathematical tractability (Marley 

& Colonius, 1992). Similarly, the assumption of deterministic accumulation facilitates 

mathematical analysis and also has a long history (e.g., Grice, 1968, 1972; Carpenter, 

1981). In short, all of the LBA models assumptions can be motivated as “tractable and 

conventional”; it is the combination of these assumptions that makes the model 

original, and their joint effect that makes it testable. More generally, once 

assumptions have been chosen, for whatever reason, a model stands or falls on its 

ability to make specific predictions that can be subject to empirical verification: 

clearly both the LBA and diffusion models pass this test. We believe the reasons for 

which assumptions are chosen matter only to the degree that they bring with them 

testable predictions. 

 

On the status of distributional assumptions 

 

We agree with J&D that distributional assumptions are important and deserve close 

scrutiny. Such scrutiny was the major motivation of Heathcote and Love (2012), who 

defined the class of deterministic accumulator (DA) models with the LBA as a special 
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case. In DA models the time to threshold for one accumulator is a ratio of random 

variables representing the distance from start point to threshold (i.e., response 

caution) in the numerator and accumulation rate in the denominator. This class is 

equivalent to the gLBA that J&D shows in universal. Heathcote and Love focused on 

the properties of a new specific (i.e., non-universal and falsifiable) model in this class 

where both distributions have a Lognormal form. Reflecting the fact that they did not 

see this change as a mere implementation detail, they gave the resulting model a 

different name, the Lognormal race (LNR). The LNR has even greater mathematical 

tractability than the LBA, particularly with respect to the case of correlated evidence 

and Bayesian estimation (Rouder, Province, Morey, Gómez & Heathcote, submitted), 

as the ratio of Lognromal variables it itself Lognormal.  

 

In the current context, the latter property of the LNR model as an interesting 

consequence; the parameters of the numerator and denominator distributions combine 

additively. In the LNR model, therefore, and in contrast to the LBA model, response 

caution and accumulation rate effects are not separately identifiable without 

additional assumptions the about a selective influence on these parameters of 

experimental manipulations. Heathcote and Love (2012) concluded that distributional 

assumptions are important in the class of DA models because they can determine the 

identifiability of effects on response caution and rate parameters. Acting on the 

implication that it is important investigate and test distributional assumptions, they 

compared the fit of the LNR and LBA models to data reported by Wagenmakers, 

Ratcliff, Gómez and McKoon (2008). Although both performed well the LBA model 

did slightly better based on model selection criteria taking account of the number of 

estimated parameters. Clearly, at least in this case, distributional assumptions were 
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not treated as mere implementation details.    

 

Ratcliff (2013) investigated the effect of variations the distributional assumptions on 

the standard diffusion model. It concludes that the psychological implications of 

standard diffusion model parameter estimates were largely invariant under mild 

misspecifications in start point and rate distributions (i.e., when it was fit to simulated 

data generated with mildly different distributions). However, we believe the limitation 

to mild changes is important to emphasize. For example, such invariance was not 

found for a more marked change in the distribution of non-decision time (from 

uniform to exponential). It is also true that invariance would fail for more marked 

changes in other two trial-to-trial distributions in the standard diffusion model, and 

change in ways that could falsify the model. For example, as the range of the uniform 

start-point distribution shrinks to zero (i.e., in the limit of a change to no start-point 

variability) errors responses cannot be faster than correct responses. Similarly, as the 

standard deviation of the Gaussian distribution of accumulation rates approaches zero 

error responses cannot be slower than correct responses. Both faster and slower errors 

are observed empirically (e.g., under instructions to respond quickly vs. accurately 

respectively, Ratcliff & Rouder, 1998).  

 

More broadly, we would argue that a balanced assessment of the longer-term history 

of evidence accumulation models reveals a healthy development and testing of 

distributional assumptions. For example, Link and Heath (1975) shows that, in the 

absence of any trial-to-trial variability, a wide range of assumptions about the form of 

moment-to-moment variability (including the Gaussian assumption made by the 

standard diffusion model) leads to equivalence in distribution correct and error RT, 
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but for other assumptions this was not the case. Laming (1968) introduced trial-to-

trial variability in diffusion start points in order to account for fast errors and Ratcliff 

(1978) introduced variability in the mean rate of accumulation to account for slow 

errors. Ratcliff and Tuerlinckx (2002) introduced trial-to-trial in the time to complete 

non-decision processes and Ratcliff, Gómez and McKoon (2004) presented evidence 

for the necessity of this addition for the success of a diffusion model of the lexical 

decision task when an additional selective influence assumption is imposed. Attention 

has also been giving to the potential for removing sources of variability in the context 

of different sets of joint assumptions. For example, Brown and Heathcote (2005) 

simplified Usher and McClelland’s (2001) evidence accumulation model by removing 

moment-to-moment noise. They justified the simplification empirically based on its 

ability to fit a wide range of benchmark data.  

 

In summary, there are many examples of investigations that have addressed 

distributional assumptions. Much of this debate has centered on whether a constant 

parameter value suffices or whether a parameter needs to be allowed to vary randomly 

from trial-to-trial. However, investigations have also addressed the subtler questions 

related to distributional form, including the sensitivity of predictions to differences in 

the form of trial-to-trial distributions (Ratcliff, 2013), and the appropriate form of 

both trial-to-trial (Heathcote & Love, 2012) and moment-to-moment (Link & Heath, 

1975) distributions. Although we think that this summary makes it clear that 

distributional assumptions have generally been treated as more than mere 

implementation details, we also agree with both Heathcote and Love (2012) and J&D 

that distributional assumptions continue to deserve further scrutiny. 
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Flexibility and testing of standard models 

 

Are the standard models overly flexible and not subject to rigorous tests that could 

potentially falsify them? J&D maps these models onto a universal Grice model, where 

all of the flexibility in the models is concentrated into the form of evidence growth 

functions and concludes: “the Grice representations offer a new perspective on the 

predictive constraints in the diffusion and LBA models arising from their parametric 

and selective influence assumptions. They show that the flexibility identified in the 

previous two subsections enables the diffusion and LBA models to match most 

aspects of the data in a post hoc manner.” (p. 45). We believe that our recounting of 

the history of the development of these models shows that their ability to fit data is 

anything but post hoc; instead it is based on a careful cumulative development of 

supporting evidence, with additional flexibility added (and sometimes removed) only 

when that is clearly justified.  

 

J&D goes on to state: “That is, had these features taken on different values, the 

models could have matched them as well, by using different parameter values.” 

(p.35). For the standard diffusion model Ratcliff (2002) shows that this statement is 

wrong. Ratcliff notes that: “Researchers working with stochastic models for RT and 

accuracy have known that their models are inflexible— that is, that there are many 

possible patterns of data the models cannot fit.” (p.286). This claim is substantiated 

with simulations that show, amongst other things, that no parameter values of the 

standard diffusion model allow it to provide an adequate fit to symmetric (Gaussian) 

and highly skewed RT distributions. Figure 1 shows that the LBA also provides a 

poor fit to a Gaussian RT distribution and an RT distribution with unrealistically large 
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skew and sharply increasing leading edge similar to Ratcliff’s example. Perhaps R&D 

did not mean to include these cases in “most aspects of the data”, but we do not 

believe this distinction is made sufficiently clear. Ratcliff’s simulations and Figure 1 

underline a fact that it is important to emphasize in order to avoid readers of J&D 

being mislead: the diffusion and LBA models are empirically falsifiable because they 

cannot fit any pattern of data by post hoc parameter adjustment.   

 

Figure 1. Thick sold lines are simulated Gaussian (left panel, mean = 1, SD = 0.25) and Weibull (right 

panel, shape parameter = 0.75, scale = 1, shift = 0.25) densities. Thinner dashed lines are best fitting 

LBA densities. The larger simulated densities have an area of 0.75 and the smaller and area of 0.25, 

representing 75% correct responses and 25% error responses respectively (error and correct 

distributions have the same parameters).  

 

Finally, J&D claim that the standard way of testing evidence accumulation models 

does not provide an inherently stringent test. It says: “An advantage frequently cited 

for stochastic-accumulation models of speeded choice is that they jointly capture the 

overall response probabilities and the RT distribution associated with each response. 

The implied suggestion is that there is some coupling among these measures inherent 

in the models, so that fitting all of them simultaneously is a more stringent test. The 
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universality results imply there is no such coupling, other than that arising from the 

parametric … assumptions … a universal model can fit all of these measures 

simultaneously and independently.” (p.28). We disagree; there is a coupling that 

arises between these measures in standard models and it arises from the joint effect of 

all assumptions, not just distributional assumptions. For the actual falsifiable models 

of choice RT that have been proposed the stringent test provided by determining 

whether they can jointly capture the response probabilities and RT distributions 

associated with each response is essential. As Ratcliff (2002) notes “the diffusion 

model can almost always, for any single experimental condition, fit the condition’s 

accuracy value and two mean RTs, one for correct and one for error responses” 

(p.286). Our experience is that the same is true for the LBA, whereas, in contrast, 

there are clearly patterns of RT distribution and response probability that cannot be 

accommodated by either model. 
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