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Abstract	  
	  
Jones	  and	  Dzhafarov	  (2013)	  provide	  a	  useful	  service	  in	  pointing	  out	  that	  some	  

assumptions	  of	  modern	  decision-‐making	  models	  require	  additional	  scrutiny.	  

Their	  main	  result,	  however,	  is	  not	  surprising:	  if	  an	  infinitely	  complex	  model	  were	  

created	  by	  assigning	  its	  parameters	  arbitrarily	  flexible	  distributions,	  this	  new	  

model	  would	  be	  able	  to	  fit	  any	  observed	  data	  perfectly.	  Such	  a	  hypothetical	  

model	  would	  be	  unfalsifiable.	  This	  is	  exactly	  why	  such	  models	  have	  never	  been	  

proposed	  in	  over	  half	  a	  century	  of	  model	  development	  in	  decision-‐making.	  

Additionally,	  the	  main	  conclusion	  drawn	  from	  this	  result	  –that	  the	  success	  of	  

existing	  decision-‐making	  models	  can	  be	  attributed	  to	  assumptions	  about	  

parameter	  distributions–	  is	  wrong.	  
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Models	  of	  Speeded	  Decision-‐Making	  Are	  Highly	  Constrained	  
	  
	  
Modern	  decision-‐making	  models	  have	  been	  used	  to	  uncover	  new	  insights	  about	  

brain	  and	  behavior	  in	  dozens	  of	  different	  paradigms	  requiring	  choice	  among	  two	  

(e.g.,	  Ratcliff, & McKoon, 2008)	  or	  more	  (e.g.,	  Busemeyer & Diederich, 2002)	  

options.	  All	  modern	  models	  share	  a	  common	  and	  simple	  structure:	  they	  assume	  

that	  evidence	  is	  gradually	  accumulated	  from	  the	  environment	  and	  a	  decision	  is	  

made	  whenever	  the	  evidence	  reaches	  a	  threshold	  amount	  (e.g.,	  the	  diffusion	  

model:	  Ratcliff	  1978,	  Ratcliff	  &	  Tuerlinckx,	  2002;	  and	  the	  linear	  ballistic	  

accumulator	  model:	  LBA,	  Brown	  &	  Heathcote,	  2008).	  In	  their	  simplest	  forms,	  the	  

models	  have	  three	  central	  parameters:	  the	  “drift	  rate”	  which	  measures	  how	  fast	  

evidence	  accumulates;	  a	  “threshold”	  which	  measures	  how	  much	  evidence	  needs	  

to	  accumulate	  before	  a	  decision	  is	  made;	  and	  “non-‐decision	  time”,	  which	  

measures	  how	  much	  time	  is	  taken	  up	  by	  processes	  other	  than	  decision-‐making,	  

such	  as	  the	  time	  taken	  to	  push	  a	  response	  button.	  

	  

Over	  the	  past	  fifty	  years	  (since	  Stone,	  1960),	  the	  most	  basic	  versions	  of	  these	  

models	  have	  been	  proven	  incomplete.	  For	  example,	  the	  earliest	  version	  of	  the	  

model,	  described	  above,	  successfully	  predicted	  the	  general	  shape	  of	  response	  

time	  distributions,	  and	  the	  tradeoff	  between	  urgent	  vs.	  cautious	  decisions,	  and	  

even	  some	  fine	  details	  of	  response	  time	  distributions	  such	  as	  hazard	  rates.	  

However,	  these	  early	  versions	  made	  such	  highly	  constrained	  predictions	  that	  

they	  were	  unable	  to	  accommodate	  patterns	  of	  differing	  speed	  between	  incorrect	  

and	  correct	  responses;	  patterns	  which	  were	  regularly	  observed	  in	  data	  when	  

participants	  are	  told	  to	  respond	  quickly	  (e.g.,	  Ratcliff	  &	  Rouder,	  1998).	  These	  
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limitations	  have	  informed	  model	  development,	  and	  modern	  response	  time	  

models	  include	  two	  key	  elements	  that	  address	  these	  earlier	  limitations:	  they	  

assume	  that	  the	  drift	  rate	  varies	  randomly	  from	  decision	  to	  decision,	  and	  also	  

that	  the	  starting	  point	  of	  the	  evidence	  accumulation	  process	  varies	  randomly	  

from	  decision	  to	  decision.	  The	  distributions	  assumed	  for	  the	  trial-‐to-‐trial	  

variability	  of	  the	  drift	  rate	  and	  start	  point	  have	  always	  been	  simple	  forms	  with	  

one	  additional	  free	  parameter.	  The	  interested	  reader	  will	  find	  a	  detailed	  history	  

of	  the	  development	  of	  response	  time	  models,	  and	  the	  implications	  for	  model	  

constraint	  and	  falsifiability,	  in	  the	  supplementary	  material	  to	  this	  comment.1	  	  

	  

Jones	  and	  Dzhafarov’s	  (2013)	  Central	  Result:	  Infinitely	  Complex	  Models	  Can	  
Be	  Unfalsifiable	  
	  
	  
Jones	  and	  Dzhafarov’s	  (2013)	  main	  result	  extends	  earlier	  work	  by	  Townsend	  

(1976),	  Marley	  and	  Colonius	  (1992),	  and	  Dzhafarov	  (1993).	  The	  key	  idea	  is	  that,	  

if	  one	  allows	  unbounded	  complexity	  and	  freedom	  in	  the	  across-‐trial	  distribution	  

of	  drift	  rates,	  the	  model	  can	  perfectly	  fit	  any	  and	  all	  data	  sets.	  This	  is	  intuitively	  

obvious	  –	  for	  example,	  if	  the	  threshold	  was	  set	  at	  1.0	  (i.e.,	  1	  unit	  of	  evidence	  

required	  to	  trigger	  a	  decision)	  and	  the	  drift	  rate	  distribution	  happened	  to	  

perfectly	  invert	  the	  observed	  data	  (i.e.,	  each	  observed	  RT	  corresponded	  to	  a	  drift	  

rate	  sample	  of	  1/RT),	  then	  the	  “predicted”	  data	  from	  the	  model	  would	  perfectly	  

match	  the	  observed	  data.	  Jones	  and	  Dzhafarov’s	  (2013)	  theorems	  formalize	  this	  

intuition.	  

	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The supplement addresses in detail specific claims about (1) a lack of empirical support for the LBA 
and diffusion models; (2) the flexibility and testing of the LBA and diffusion models; (3) positions held 
by authors of evidence accumulation models about the status of different assumptions made by their 
models; and (4) the supposed special status of distributional assumptions over other assumptions.	  
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It	  is	  not	  surprising	  that	  allowing	  infinite	  complexity	  in	  a	  model	  makes	  it	  

unfalsifiable.	  This	  is	  not	  unique	  to	  decision-‐making	  or	  response	  time	  models,	  but	  

applies	  to	  all	  models.	  	  For	  example,	  it	  is	  trivial	  to	  see	  that	  signal	  detection	  theory	  

can	  perfectly	  fit	  any	  pattern	  of	  hit	  and	  false	  alarm	  rates,	  if	  one	  allows	  unbounded	  

freedom	  in	  how	  the	  parameters	  (d’	  and	  bias)	  change	  across	  conditions.	  Similarly,	  

a	  linear	  regression	  model	  with	  an	  unlimited	  number	  of	  predictors	  will	  fit	  any	  

data	  at	  all.	  

	  

This	  kind	  of	  result	  does	  not	  make	  signal	  detection	  theory	  or	  linear	  regression	  

any	  less	  useful;	  rather	  it	  means	  that	  researchers	  should	  limit	  the	  complexity	  of	  

models	  instantiated	  within	  these	  frameworks.	  This	  is	  exactly	  what	  has	  always	  

happened	  in	  practice	  with	  decision-‐making	  models.	  Researchers	  have	  never	  

proposed	  arbitrary	  and	  complex	  distributions	  for	  across	  trial	  variability,	  but	  

have	  always	  restricted	  themselves	  to	  highly	  constrained	  and	  extremely	  simple	  

distributions,	  such	  as	  the	  uniform	  distribution	  (for	  start	  points)	  or	  the	  Gaussian	  

distribution	  (for	  drift	  rates).	  The	  central	  result	  of	  Jones	  and	  Dzhafarov	  (2013),	  

while	  entirely	  correct	  for	  hypothetical,	  unrealistic	  models,	  applies	  to	  no	  actual	  

model	  that	  has	  ever	  been	  proposed.	  

	  

It	  is	  true	  that	  the	  particular	  forms	  of	  the	  across-‐trial	  variability	  parameters	  in	  

decision-‐making	  models	  (Gaussian	  and	  uniform)	  were	  originally	  chosen	  

arbitrarily,	  for	  practical	  and	  not	  theoretical	  reasons.	  However,	  since	  these	  forms	  

were	  chosen	  in	  the	  original	  model	  development,	  they	  have	  been	  fixed	  in	  the	  

dozens	  or	  hundreds	  of	  applications	  of	  the	  models	  since.	  This	  constitutes	  a	  

rigorous	  test	  of	  the	  models.	  The	  simple	  forms	  chosen	  for	  across-‐trial	  variability	  
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result	  in	  falsifiable	  models	  that	  could	  easily	  have	  failed	  to	  fit	  new	  data,	  many	  

times	  over,	  but	  this	  has	  not	  happened.	  In	  other	  words,	  if	  the	  precise	  shape	  of	  the	  

across-‐trial	  distributions	  had	  been	  crucial	  for	  the	  model’s	  success	  in	  fitting,	  one	  

would	  expect	  these	  shapes	  to	  differ	  from	  experiment	  to	  experiment	  (or	  even	  

across	  subjects	  or	  conditions)	  in	  order	  to	  accommodate	  the	  idiosyncrasies	  of	  

different	  data.	  In	  reality,	  the	  models	  have	  managed	  to	  provide	  an	  excellent	  

account	  of	  hundreds	  of	  data	  sets	  and	  thousands	  of	  participants	  using	  exactly	  the	  

same	  distributional	  shapes.	  

	  

What	  are	  the	  Implications	  for	  Real	  Decision-‐Making	  Models?	  
	  
	  
An	  important	  conclusion	  drawn	  from	  Jones	  and	  Dzhafarov’s	  (2013)	  main	  result	  

and	  stated	  prominently	  on	  the	  front	  page	  is	  that	  “the	  explanatory	  or	  predictive	  

content	  of	  these	  models	  is	  determined	  …	  by	  distributional	  assumptions”.	  This	  is	  a	  

mistaken	  conclusion	  that	  does	  not	  follow	  from	  the	  central	  result.	  Jones	  and	  

Dzhafarov	  showed	  that	  a	  new	  model	  formed	  by	  allowing	  infinite	  complexity	  in	  

the	  drift	  rate	  distribution	  could	  be	  unfalsifiable.	  This	  does	  not	  imply	  the	  standard	  

model’s	  falsifiability	  was	  entirely	  due	  to	  its	  assumptions	  about	  drift	  rate.	  	  

	  

The	  problem	  with	  concluding	  that	  drift	  rate	  assumptions	  are	  the	  key	  to	  the	  

standard	  models’	  falsifiability	  is	  that	  allowing	  infinite	  flexibility	  in	  drift	  rate	  

distributions	  is	  sufficient	  to	  create	  an	  unfalsifiable	  model,	  but	  it	  is	  not	  necessary.	  

There	  are	  almost	  as	  many	  ways	  to	  make	  a	  model	  unfalsifiable	  as	  there	  are	  

parameters	  in	  the	  model:	  almost	  any	  parameter,	  if	  endowed	  with	  infinitely	  

flexible	  distributional	  assumptions,	  can	  result	  in	  a	  new	  model	  that	  is	  
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unfalsifiable.	  For	  example,	  if	  one	  allowed	  infinite	  complexity	  in	  the	  distribution	  

of	  non-‐decision	  time,	  the	  model	  could	  fit	  any	  response	  time	  data	  at	  all	  (e.g.,	  by	  

assuming	  that	  the	  distribution	  of	  non-‐decision	  time	  was	  exactly	  the	  observed	  

data	  distribution,	  and	  that	  the	  time	  taken	  for	  the	  decision	  process	  was	  zero).	  

Similarly,	  if	  one	  allowed	  infinite	  complexity	  in	  the	  distribution	  of	  start	  points,	  the	  

model	  could	  fit	  any	  data	  at	  all	  (e.g.,	  by	  assuming	  a	  constant	  drift	  rate	  of	  1.0,	  a	  

threshold	  of	  zero,	  zero	  non-‐decision	  time	  and	  a	  start	  point	  distribution	  that	  was	  

exactly	  the	  negative	  of	  the	  observed	  data).	  Similar	  arguments	  can	  be	  made	  about	  

most	  parameters	  of	  a	  model,	  from	  the	  shape	  of	  the	  evidence	  accumulation	  curve	  

to	  the	  location	  of	  the	  threshold.	  

	  

These	  trivial	  examples	  illustrate	  the	  mistake	  of	  according	  special	  status	  to	  the	  

drift	  rate	  assumptions	  (or	  any	  single	  assumption).	  Rather,	  a	  model’s	  predictive	  

content	  is	  determined	  by	  all	  of	  its	  assumptions	  together,	  and	  it	  is	  wrong	  to	  assign	  

special	  status	  to	  particular	  assumptions	  about	  across-‐trial	  variability.	  

Confusingly,	  Jones	  and	  Dzhafarov	  appear	  to	  come	  to	  exactly	  this	  same	  

conclusion,	  but	  rather	  less	  prominently	  (on	  p.48):	  	  “one	  needs	  to	  consider	  both	  

distributional	  and	  structural	  assumptions	  jointly”.	  Our	  supplementary	  material	  

further	  explores	  the	  tension	  in	  Jones	  and	  Dzhafarov’s	  article	  between	  the	  idea	  

that	  all	  model	  assumptions	  matter	  equally,	  vs.	  the	  idea	  that	  one	  particular	  model	  

assumption	  carries	  all	  the	  predictive	  power.	  

	  
	   	  



Falsifiable	  Decision-‐Making	  Models	   7	  

Conclusions	  
	  
	  
In	  a	  provocative	  and	  mathematically	  sound	  article,	  Jones	  and	  Dzhafarov	  (2013)	  

have	  proposed	  hypothetical	  response	  time	  models	  with	  infinite	  complexity	  in	  

distributional	  shape,	  and	  shown	  that	  these	  models	  are	  unfalsifiable.	  This	  

conclusion	  corroborates	  current	  practice	  that	  eschews	  such	  models	  in	  favor	  of	  

models	  that	  are	  highly	  constrained	  in	  distributional	  shape.	  Despite	  their	  

constraints,	  these	  realistic	  models	  have	  consistently	  yielded	  good	  fits	  to	  many	  

data	  sets	  across	  a	  range	  of	  different	  paradigms,	  without	  changes	  in	  the	  

distributional	  assumptions	  across	  hundreds	  of	  experiments	  and	  thousands	  of	  

participants.	  The	  empirical	  success	  of	  realistic,	  constrained	  models	  shows	  that	  

the	  explanatory	  and	  predictive	  content	  of	  realistic	  response	  time	  models	  is	  not	  

determined	  by	  distributional	  assumptions.	  	  

	  

In	  summary,	  Jones	  and	  Dzhafarov	  (2013)	  are	  right	  to	  point	  out	  that	  parameter	  

distribution	  assumptions	  of	  decision-‐making	  models	  deserve	  scrutiny,	  but	  that	  

scrutiny	  has	  a	  long	  history	  (e.g.,	  Link & Heath, 1975) with	  increased	  recent	  

activity	  (e.g.,	  Heathcote	  &	  Love,	  2012,	  Ratcliff,	  2013,	  see	  supplementary	  material	  

for	  more	  details).	  However,	  we	  conclude	  that,	  although	  Jones	  and	  Dzhafarov’s	  

main	  results	  are	  important	  for	  hypothetical,	  infinitely	  complex	  models	  that	  have	  

never	  been	  proposed,	  they	  are	  much	  less	  relevant	  for	  the	  realistic	  models	  that	  

are	  used	  in	  actual	  practice.	  	  
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Supplement	  to	  “The	  Falsifiability	  of	  Actual	  Decision-‐Making	  Models”	  

	  

Jones and Dzhafarov (2013, hereafter J&D) reports work expanding the scope of 

previous results (Dzhafarov, 1993; Marley & Colonius, 1992; Townsend, 1976) on 

the universality of independent race models, models which assume that choices are 

made by accumulating evidence about different potential responses. Universality in 

this context refers to the ability of a model to account for any observed pattern of 

behavior in discrete choice experiments as characterized by response probabilities and 

response time (RT) distributions. J&D draws an alarming conclusion with respect to 

two evidence accumulation models that have been widely applied in psychology and 

the neurosciences: “Although the diffusion and LBA models have been highly 

successful in fitting data from a variety of task domains (e.g., Brown & Heathcote, 

2008; Ratcliff & Smith, 2004), this success does not imply any support for the 

theoretical or structural assumptions of these models.” (p.47) Does this mean J&D 

have shown that psychologists and neuroscientists have been misled, and that there is 

no empirical support for the LBA and diffusion2 models? We believe the answer is 

clearly no.  

 

Although the mathematical results in J&D are clear and precise, the inferences drawn 

from them are often unclear and imprecise in a way that sometimes misrepresents 

positions held by the authors of the diffusion, LBA, and other evidence accumulation 

models, and which has the potential to mislead future research. These problems go 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  A	  variety	  of	  different	  specific	  models	  have	  been	  proposed	  that	  share	  the	  assumption	  evidence	  
diffuses	  (i.e.,	  varies	  from	  moment-‐to-‐moment	  in	  the	  continuous	  case	  or	  sample-‐to-‐sample	  in	  the	  
discrete	  case),	  beginning	  with	  the	  seminal	  work	  of	  Stone	  (1960).	  The	  diffusion	  model	  as	  studied	  
in	  J&D	  is	  elaborated	  with	  the	  idea	  of	  three	  types	  of	  trial-‐to-‐trial	  variability	  in	  parameters.	  We	  
follow	  J&D	  in	  calling	  a	  diffusion	  model	  with	  uniform	  variability	  in	  non-‐decision	  time	  and	  the	  
starting	  evidence	  accumulation	  value,	  and	  Gaussian	  variability	  in	  the	  mean	  rate	  of	  accumulation	  
–	  the	  most	  widely	  used	  diffusion	  model	  over	  the	  last	  decade	  –	  as	  “the”	  diffusion	  model.	  	  	  	  
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beyond the claim just recounted from J&D about 1) a lack of empirical support for the 

LBA and diffusion models; they also encompass unsupported and/or incorrect 

inferences about 2) the flexibility and testing of the LBA and diffusion models, 3) 

positions held by authors of evidence accumulation models about the status of 

different assumptions made by their models and 4) claims about the special status of 

distributional assumptions over other assumptions that together constitute these 

models. The distributional assumptions referred to in J&D are assumptions about the 

mathematical form of variability in model parameters from one trial to the next.  

 

The Special Status of Distributional Assumptions 

 

We examine the claim about the special status of distributional assumptions first as 

J&D is conflicted on this point. In the abstract it says: “the explanatory or predictive 

content of these models is determined not by their structural assumptions, but rather 

by distributional assumptions” (p.1). However, in the discussion it says: “one needs to 

consider both distributional and structural assumptions jointly” (p.48). We agree with 

the second statement, that it is the joint properties of all assumptions that are critical, 

and worry that the contradiction will confuse careful readers and, because of the 

prominence of the abstract, mislead casual readers. Distributional assumptions do not 

have a special status because it is only when they are combined with structural 

assumptions – assumptions about the way that evidence is processed and a choice 

made – that a model could make predictions about behavior.  

 

If anything it is a structural assumption, evidence accumulation to a threshold, which 

has a special status. This assumption states that one or more types of evidence are 
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accumulated over time, that each type has one or more associated thresholds, and that 

a response associated with a threshold is selected if its associated evidence total is the 

first to satisfy any threshold. Participants can set the threshold strategically to 

modulate response caution (i.e., to trade speed for accuracy or vise versa). One might 

see this assumption’s status as special because most of the modern literature on 

modeling choice RT, including J&D, does not question it. In contrast, the generality 

of the claim in J&D about the primacy for distributional assumptions is contradicted 

by Dzhafarov (1993). It shows universality for an arbitrary choice of threshold 

distribution by allowing complete flexibility in the form of a deterministic 

accumulation process. Hence, in Dzhafarov, who studied a type of evidence 

accumulation to threshold model called a Grice model (e.g., Grice, 1968, 1972), the 

form of the accumulation process (e.g., linear, exponential, sigmoid etc.) determines 

the model’s explanatory or predictive content, not distributional assumptions.  

 

In the context of the LBA model, which assumes linear deterministic accumulation, 

J&D shows that universality results by allowing complete flexibility in the 

distribution of rates of accumulation. In contrast to this model, which J&D names the 

gLBA, the LBA model is not universal because it assumes a specific form for the rate 

distribution (Gaussian) and a specific from for the distribution of points at which 

evidence accumulation starts (uniform). J&D states “universality of the gLBA … is a 

straightforward mathematical fact. However, its implications for the standard LBA 

seem to have been overlooked. Specifically, this result implies that the predictive 

power of the standard LBA lies in its assumptions regarding growth-rate and start-
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point distributions (which have heretofore been treated as implementation details)3” 

(p.18). Putting to one side that we find it unsurprising that implications for the 

standard LBA have been “overlooked” (after all the “mathematical fact” was first 

proved in J&D, and it is about a model that is not the standard LBA model but instead 

about a more general model that never been proposed or used by anyone but J&D), 

the implication drawn is clearly false; it is the joint effects of all assumptions in the 

standard LBA model, including linear accumulation, that determines its explanatory 

and predictive content.   

 

In summary, J&D states that its “core message … is that, when a modeling 

framework is universal, the predictive content of any model expressed in that 

framework lies in whatever falsifiable assumptions that model makes”. (p.33). We 

agree with this statement but not the implication that is immediately drawn: “For the 

standard LBA and diffusion models, these assumptions are the forms of the 

probability distributions for growth rate (Gaussian), starting points (uniform), and 

nondecision time (uniform, for the diffusion model)” (p.33). In contrast, we think that 

it is the joint effect of all of the model’s assumptions that determine its explanatory 

and predictive content.  

 

What does the evidence imply? 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  J&D also examines the effect on universality of two “selective influence” assumptions about the way 
model parameters can vary across stimuli and experimental conditions. J&D notes that of “the two 
selective influence assumptions made by the standard diffusion and LBA models, the first has no 
impact on universality, and the second is logically suspect and perhaps even psychologically unlikely.” 
(p.31). Recent research we have preformed applying both the diffusion and LBA (Rae, Heathcote, 
Donkin & Brown, submitted), as well as other research using only the diffusion, including papers cited 
in J&D as well as other work (Starns, Ratcliff, & White, 2012), supports the doubts raised on 
psychological grounds, and so we do not discuss selective influence assumptions further and omit 
mention of them in quotes for this reason.	  
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What then of the claim in J&D that the success of the diffusion and LBA models in 

fitting data from a wide variety of task domains “does not imply any support for the 

theoretical or structural assumptions of these models” (p.47)? We think that this 

success does imply strong support for the combination of assumptions in each model 

(i.e., the model’s joint assumptions). Taken together, the assumptions make up 

models that could have been falsified. However this did not happen. Instead, the 

models provided good (but not perfect) descriptions of fine-grained details of 

behavior. They also provided a coherent account of that behavior in terms of latent 

psychological constructs with a clear correspondence to the model’s parameter 

estimates. That said, we do agree that the universality results in J&D have a more 

limited implication, that there is no necessary support for any assumption taken in 

isolation.  

 

How important is it that we find support for isolated assumptions, or perhaps even 

subsets of assumptions? J&D states: “Whenever a cognitive model provides a good 

account of empirical data, it is critical to understand which of its assumptions are 

responsible for its predictive success. Such understanding is important for theoretical 

progress and for generalizing to other paradigms or domains.” (p.46). In contrast, we 

do not see such an understanding as critical, and think that it is rarely if ever 

achievable in models of sufficient complexity to provide a realistically detailed 

account of empirical data. J&D goes on to state: “the assumptions of most formal 

models can be roughly divided into ones corresponding to theoretical principles the 

model is meant to embody, and technical details that are necessary to generate 

quantitative predictions but are chosen without theoretical consideration and can be 

modified or dispensed with as need arises.” (p.48). We think that J&D provides a 
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valuable service in extending the already existing demonstrations by Townsend 

(1976), Marley and Colonius (1992) and Dzhafarov (1993) that this rough division is 

indeed very rough in the context of evidence accumulation models, and so probably 

not a differentiation that is worth making in any strong sense. However, we see only a 

few examples in the past literature where this differentiation has been made, and do 

not believe that the field has been misled on this point. 

 

A very different perspective is offered in J&D. One of its concluding statements is 

that: “Mathematical modeling has produced models that often yield impressive fits to 

these data with relatively few free parameters. Nevertheless, the theoretical 

implications of these modeling results are far less certain than they have been made 

out to be. As we have shown here, the models’ predictions derive not from their 

structural assumptions but from technical aspects that have been considered irrelevant 

details”. (p.50) The “technical aspects” referred to are distributional assumptions, 

which are claimed to have “received little attention or justification” (p.13), a claim 

that is later repeated and elaborated, saying they have been treated as ‘being “merely” 

implementation details and not part of the underlying theory.’ (p.29). In support of 

distributional assumptions having been treated as “irrelevant” and “mere” 

implementation details J&D quotes Brown and Heathcote (2008, p.160) saying that 

they: “chose the normal distribution for practical reasons, because it is both tractable 

and conventional.”. J&D reasons: “If these distributional assumptions are only a 

matter of convenience and tradition, then they should not be considered a critical part 

of the psychological theory.” (pp.15-16).  

 

We think this reasoning in J&D confuses the origin of assumptions and their place in 
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a model. Both the diffusion and LBA models also make a linear accumulation 

assumption, so that assumption might also be characterized as conventional. The 

linear assumption in both models is also key for mathematical tractability. Indeed, 

Brown and Heathcote (2008) explicitly motivated the linear assumption as about 

tractability with reference to their BA model (Brown & Heathcote, 2005), where the 

combination of the same distributional assumptions with nonlinear accumulation is 

not mathematically tractable. The LBA assumption of an independent race, with each 

racer having its own response threshold, has its basis in a long history of independent 

race model applications (e.g., Vickers, 1979) and in mathematical tractability (Marley 

& Colonius, 1992). Similarly, the assumption of deterministic accumulation facilitates 

mathematical analysis and also has a long history (e.g., Grice, 1968, 1972; Carpenter, 

1981). In short, all of the LBA models assumptions can be motivated as “tractable and 

conventional”; it is the combination of these assumptions that makes the model 

original, and their joint effect that makes it testable. More generally, once 

assumptions have been chosen, for whatever reason, a model stands or falls on its 

ability to make specific predictions that can be subject to empirical verification: 

clearly both the LBA and diffusion models pass this test. We believe the reasons for 

which assumptions are chosen matter only to the degree that they bring with them 

testable predictions. 

 

On the status of distributional assumptions 

 

We agree with J&D that distributional assumptions are important and deserve close 

scrutiny. Such scrutiny was the major motivation of Heathcote and Love (2012), who 

defined the class of deterministic accumulator (DA) models with the LBA as a special 
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case. In DA models the time to threshold for one accumulator is a ratio of random 

variables representing the distance from start point to threshold (i.e., response 

caution) in the numerator and accumulation rate in the denominator. This class is 

equivalent to the gLBA that J&D shows in universal. Heathcote and Love focused on 

the properties of a new specific (i.e., non-universal and falsifiable) model in this class 

where both distributions have a Lognormal form. Reflecting the fact that they did not 

see this change as a mere implementation detail, they gave the resulting model a 

different name, the Lognormal race (LNR). The LNR has even greater mathematical 

tractability than the LBA, particularly with respect to the case of correlated evidence 

and Bayesian estimation (Rouder, Province, Morey, Gómez & Heathcote, submitted), 

as the ratio of Lognromal variables it itself Lognormal.  

 

In the current context, the latter property of the LNR model as an interesting 

consequence; the parameters of the numerator and denominator distributions combine 

additively. In the LNR model, therefore, and in contrast to the LBA model, response 

caution and accumulation rate effects are not separately identifiable without 

additional assumptions the about a selective influence on these parameters of 

experimental manipulations. Heathcote and Love (2012) concluded that distributional 

assumptions are important in the class of DA models because they can determine the 

identifiability of effects on response caution and rate parameters. Acting on the 

implication that it is important investigate and test distributional assumptions, they 

compared the fit of the LNR and LBA models to data reported by Wagenmakers, 

Ratcliff, Gómez and McKoon (2008). Although both performed well the LBA model 

did slightly better based on model selection criteria taking account of the number of 

estimated parameters. Clearly, at least in this case, distributional assumptions were 
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not treated as mere implementation details.    

 

Ratcliff (2013) investigated the effect of variations the distributional assumptions on 

the standard diffusion model. It concludes that the psychological implications of 

standard diffusion model parameter estimates were largely invariant under mild 

misspecifications in start point and rate distributions (i.e., when it was fit to simulated 

data generated with mildly different distributions). However, we believe the limitation 

to mild changes is important to emphasize. For example, such invariance was not 

found for a more marked change in the distribution of non-decision time (from 

uniform to exponential). It is also true that invariance would fail for more marked 

changes in other two trial-to-trial distributions in the standard diffusion model, and 

change in ways that could falsify the model. For example, as the range of the uniform 

start-point distribution shrinks to zero (i.e., in the limit of a change to no start-point 

variability) errors responses cannot be faster than correct responses. Similarly, as the 

standard deviation of the Gaussian distribution of accumulation rates approaches zero 

error responses cannot be slower than correct responses. Both faster and slower errors 

are observed empirically (e.g., under instructions to respond quickly vs. accurately 

respectively, Ratcliff & Rouder, 1998).  

 

More broadly, we would argue that a balanced assessment of the longer-term history 

of evidence accumulation models reveals a healthy development and testing of 

distributional assumptions. For example, Link and Heath (1975) shows that, in the 

absence of any trial-to-trial variability, a wide range of assumptions about the form of 

moment-to-moment variability (including the Gaussian assumption made by the 

standard diffusion model) leads to equivalence in distribution correct and error RT, 
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but for other assumptions this was not the case. Laming (1968) introduced trial-to-

trial variability in diffusion start points in order to account for fast errors and Ratcliff 

(1978) introduced variability in the mean rate of accumulation to account for slow 

errors. Ratcliff and Tuerlinckx (2002) introduced trial-to-trial in the time to complete 

non-decision processes and Ratcliff, Gómez and McKoon (2004) presented evidence 

for the necessity of this addition for the success of a diffusion model of the lexical 

decision task when an additional selective influence assumption is imposed. Attention 

has also been giving to the potential for removing sources of variability in the context 

of different sets of joint assumptions. For example, Brown and Heathcote (2005) 

simplified Usher and McClelland’s (2001) evidence accumulation model by removing 

moment-to-moment noise. They justified the simplification empirically based on its 

ability to fit a wide range of benchmark data.  

 

In summary, there are many examples of investigations that have addressed 

distributional assumptions. Much of this debate has centered on whether a constant 

parameter value suffices or whether a parameter needs to be allowed to vary randomly 

from trial-to-trial. However, investigations have also addressed the subtler questions 

related to distributional form, including the sensitivity of predictions to differences in 

the form of trial-to-trial distributions (Ratcliff, 2013), and the appropriate form of 

both trial-to-trial (Heathcote & Love, 2012) and moment-to-moment (Link & Heath, 

1975) distributions. Although we think that this summary makes it clear that 

distributional assumptions have generally been treated as more than mere 

implementation details, we also agree with both Heathcote and Love (2012) and J&D 

that distributional assumptions continue to deserve further scrutiny. 

    



Falsifiable	  Decision-‐Making	  Models	   19	  

Flexibility and testing of standard models 

 

Are the standard models overly flexible and not subject to rigorous tests that could 

potentially falsify them? J&D maps these models onto a universal Grice model, where 

all of the flexibility in the models is concentrated into the form of evidence growth 

functions and concludes: “the Grice representations offer a new perspective on the 

predictive constraints in the diffusion and LBA models arising from their parametric 

and selective influence assumptions. They show that the flexibility identified in the 

previous two subsections enables the diffusion and LBA models to match most 

aspects of the data in a post hoc manner.” (p. 45). We believe that our recounting of 

the history of the development of these models shows that their ability to fit data is 

anything but post hoc; instead it is based on a careful cumulative development of 

supporting evidence, with additional flexibility added (and sometimes removed) only 

when that is clearly justified.  

 

J&D goes on to state: “That is, had these features taken on different values, the 

models could have matched them as well, by using different parameter values.” 

(p.35). For the standard diffusion model Ratcliff (2002) shows that this statement is 

wrong. Ratcliff notes that: “Researchers working with stochastic models for RT and 

accuracy have known that their models are inflexible— that is, that there are many 

possible patterns of data the models cannot fit.” (p.286). This claim is substantiated 

with simulations that show, amongst other things, that no parameter values of the 

standard diffusion model allow it to provide an adequate fit to symmetric (Gaussian) 

and highly skewed RT distributions. Figure 1 shows that the LBA also provides a 

poor fit to a Gaussian RT distribution and an RT distribution with unrealistically large 
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skew and sharply increasing leading edge similar to Ratcliff’s example. Perhaps R&D 

did not mean to include these cases in “most aspects of the data”, but we do not 

believe this distinction is made sufficiently clear. Ratcliff’s simulations and Figure 1 

underline a fact that it is important to emphasize in order to avoid readers of J&D 

being mislead: the diffusion and LBA models are empirically falsifiable because they 

cannot fit any pattern of data by post hoc parameter adjustment.   

 

Figure 1. Thick sold lines are simulated Gaussian (left panel, mean = 1, SD = 0.25) and Weibull (right 

panel, shape parameter = 0.75, scale = 1, shift = 0.25) densities. Thinner dashed lines are best fitting 

LBA densities. The larger simulated densities have an area of 0.75 and the smaller and area of 0.25, 

representing 75% correct responses and 25% error responses respectively (error and correct 

distributions have the same parameters).  

 

Finally, J&D claim that the standard way of testing evidence accumulation models 

does not provide an inherently stringent test. It says: “An advantage frequently cited 

for stochastic-accumulation models of speeded choice is that they jointly capture the 

overall response probabilities and the RT distribution associated with each response. 

The implied suggestion is that there is some coupling among these measures inherent 

in the models, so that fitting all of them simultaneously is a more stringent test. The 
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universality results imply there is no such coupling, other than that arising from the 

parametric … assumptions … a universal model can fit all of these measures 

simultaneously and independently.” (p.28). We disagree; there is a coupling that 

arises between these measures in standard models and it arises from the joint effect of 

all assumptions, not just distributional assumptions. For the actual falsifiable models 

of choice RT that have been proposed the stringent test provided by determining 

whether they can jointly capture the response probabilities and RT distributions 

associated with each response is essential. As Ratcliff (2002) notes “the diffusion 

model can almost always, for any single experimental condition, fit the condition’s 

accuracy value and two mean RTs, one for correct and one for error responses” 

(p.286). Our experience is that the same is true for the LBA, whereas, in contrast, 

there are clearly patterns of RT distribution and response probability that cannot be 

accommodated by either model. 
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