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Response times have been very informative for the understanding of mental processes,1

for many years. The most useful analyses of response times have been those based on2

cognitive theories of decision-making, known as evidence accumulation models. We review3

the history of decision-making models, and the empirical phenomena which have guided4

their development. We focus particularly on the common elements of the models, as they5

represent theoretical agreement about the most fundamental elements of decision-making6

theory. We also review the practical usage of evidence accumulation models as data-analysis7

tools, with a discussion of the strengths and weaknesses of this popular approach. While8

popular, model-based analysis of response time data can be challenging, and so we review9

developments which make those analyses easier, and also discuss common approaches to10

the most common problems in plotting, parameter estimation, and model selection.11

Introduction12

Much of experimental psychology uses accuracy and response time (RT) data to make13

inferences about the processes underlying performance. These data are used in many forms,14

from simple mean RT or accuracy on their own, through to complete joint distributions over15

both measures. RT data are used in many different research paradigms, including classic16

areas of basic and applied psychology such as: memory; executive function (inhibitory17

control, and task switching); reading; numeracy; categorisation; reasoning; intelligence18

research; attention; visual and auditory perception; animal cognition; clinical psychology;19

and human factors. The classic textbook on response times, by Luce (1986), reviews these20

topics.21

Standard paradigms for investigating the above kinds of decisions involve “speeded22

choice”. Participants are repeatedly asked to make simple decisions with a focus on both23

the accuracy and speed of their responses. For example, participants might be asked to24

decide whether the number of items in a simple display is more or less than some criterion25

value (Ratcliff & Rouder, 1998). The data from speeded choice paradigms include both RT26

and accuracy, and it is important that those two variables be considered jointly. A central27

reason for this is the potential trade-off between how long a response takes to make and28

the likelihood that the response will be correct. The long-studied speed-accuracy tradeoff29
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describes how responses made quickly are more likely to be incorrect (Wickelgren, 1977;30

Schouten & Bekker, 1967; Pachella, 1974), making independent analyses of each dependent31

variable problematic. For example, imagine a comparison in which people from Group A32

were able to respond, on average, in 500ms, and Group B in 1,000ms. It is tempting33

to infer that people from Group A perform better than Group B. What if, however, we34

subsequently found out that those in Group A made more errors (15% incorrect responses)35

than Group B (5% incorrect responses). Because Group A were faster but made more errors36

than Group B it is possible that both groups performed the task equivalently well, but that37

Group B was more cautious. It is possible that if people in Group A were encouraged to38

be more cautious, such that they too made errors only 5% of the time, that their mean RT39

might also be 1000ms.40

In this simple example, the speed-accuracy tradeoff was easy to spot, but it is not41

always so. Frequently, there can be very large differences in mean RT which occur with42

very small – even statistically nonsignificant – differences in accuracy. The standard ap-43

proach of submitting accuracy and mean RT to separate statistical tests does not always44

address the problem. Even in the simplest cases, the standard approach provides no guid-45

ance on the central question of interest: how to combine RT and accuracy to judge the46

overall performance level. The above examples example demonstrate that there are many47

determinants of task performance, beyond just one’s basic ability to perform the task, such48

as caution, bias, or even the time to make the required motor response.49

The first key step in understanding the underlying causes of differences in RT and50

accuracy comes from analyzing not just mean RT, but the joint distribution over RT and51

accuracy. This joint distribution specifies the probability of making each response (say,52

correct vs. incorrect responses, or “bright” vs. “dark” responses) at all different RTs.53

The second key step is to interpret these joint distributions by fitting quantitative models54

of speeded decision-making. There are many quantitative cognitive models which explain55

RT and accuracy distributions in terms of latent variables representing decision-making56

processes. The most successful models of RT and accuracy (“choice RT models”) are the57

evidence accumulation (or sequential sampling) models, including: the diffusion model,58

(Ratcliff, 1978); the EZ diffusion model (Wagenmakers, van der Maas, & Grasman, 2007);59

the Poisson accumulator model (Pike, 1966; P. L. Smith & Vickers, 1988; Van Zandt,60

Colonius, & Proctor, 2000); the leaky competing accumulator model (Usher & McClelland,61

2001); the Ising decision model (Verdonck & Tuerlinckx, 2014); the urgency gating model62

(Cisek, Puskas, & El-Murr, 2009); and the ballistic accumulator models (Carpenter &63

Reddi, 2001; Brown & Heathcote, 2005, 2008).64

All evidence accumulation models share the basic assumption that participants sam-65

ple information from the environment. This information is then taken as evidence for one66

of the competing responses. Evidence is accumulated until it reaches some threshold level67

for one of the potential responses. That response is then chosen, with the time taken for68

evidence to reach the threshold being the decision time component of the RT (Stone, 1960).69

To explain the variability in RTs and in response choices (i.e., errors), the models assume70
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that evidence accumulation is noisy. This noise means that on some trials evidence for71

incorrect responses will reach threshold before evidence for the correct response.72

Decision-making models make predictions for the joint distribution over RT and73

choice, and these predictions are defined by latent parameters which represent processes74

underlying how decisions are made. Of these variables, three are common across all variants75

of evidence accumulation models and are often of central research interest (Wagenmakers76

et al., 2007). The three variables are rate of processing, response caution and non-decision77

time. Rate of processing, often called drift rate, refers to the speed at which evidence78

for a response is accumulated, and is a measure of how well the task is being performed.79

Response caution refers to how much evidence is required before a response is made, and80

is most often responsible for producing a trade-off between the speed and accuracy of81

responses. By setting a large threshold for how much evidence is required before making82

a response, a participant will wait longer to make a decision. Waiting this extra time83

means that the response is more likely to be correct, as noise in the evidence accumulation84

process will be integrated out with time. When the threshold is set low, however, responses85

will be faster but more vulnerable to noise in the system, and hence more likely to be86

incorrect. Non-decision time refers to the time taken for all components of RT which are87

not part of the evidence accumulation process. The non-decision time is added to the88

decision time produced by the evidence accumulation process to give a predicted RT, on89

the basis of a strictly-serial assumption. Non-decision time is most often represented as a90

simple additive constant value, although some models assume that uniform noise is added91

(Ratcliff & Tuerlinckx, 2002; Verdonck & Tuerlinckx, 2016).92

Though all evidence accumulation models have some form of these three latent vari-93

ables, their exact form within any particular model varies substantially. The different94

choice RT models also make considerably different assumptions about what noise is nec-95

essary to account for RT and accuracy data. What follows is an overview of some of the96

more popular choice RT models, with particular focus on two things: how the three afore-97

mentioned latent variables are implemented, and which sources of noise are assumed to be98

important enough to model.99

Overview of Decision-Making Models100

There have been dozens of different evidence accumulation models developed and101

tested against data, ranging from very simple random walks (Stone, 1960) through to de-102

tailed descriptions of complex neural circuits (Lo & Wang, 2006; Frank & Claus, 2006;103

Frank, 2006). We have organized our brief review of some of these models into two sec-104

tions, according to whether the models posit multiple, racing, accumulators, or a single105

accumulator between multiple boundaries. To help keep track of the relationships between106

these models, Figure 1 provides a schematic illustration of the relationships between some107

of the models. This figure is similar to Figure 1 of Ratcliff and Smith (2004) and to Figure108

4 of Bogacz, Brown, Moehlis, Holmes, and Cohen (2006), both of which the reader might109

find useful for more detailed taxonomies of some parts of the model space.110
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Evidence	Accumula.on	Models	

Many	Accumulators	One	Accumulator	

-  Discrete	.me,	con.nuous	evidence:	random	
walk.	

-  Con.nuous	.me	and	evidence:	diffusion,	EZ	
-  With	non-standard	probability:	quantum.	

With	decay	(“leakage”):	
Ornstein-Uhlenbeck.	

With	.me-varying	
boundaries	or	driF	rates:	

collapsing	bounds,	
urgency	ga?ng,	VSTM.	

-  Discrete	.me,	con.nuous	
evidence:	accumulator.		

-  Con.nuous	.me,	discrete	
evidence:	Poisson.	

Without	randomness	
during	accumula.on:	

LBA,	BA,	LATER.	

With	decay,	and	response	
compe..on:	LCA,	Ising.	

With	detailed	neural	
dynamics:	Frank’s	or	Lo	

&	Wang’s	models.	

Figure 1. Schematic illustration of the relationships between some evidence accumulation models.
Mostly, the complexity of the models increases from top to bottom of the figure.

Single Accumulator Models. One of the first attempts to model RT distributions was111

the random walk model (Stone, 1960; Link & Heath, 1975; Laming, 1968; Bogacz et al.,112

2006). In a random walk process, time passes in discrete time steps of length ∆t. During113

each time step some evidence is extracted from the environment suggesting which of the114

two possible responses (say, A or B) is correct. This evidence then increments a counter,115

say x, such that if the evidence supports response A the value of x increases, and if the116

evidence supports response B then x decreases. When x equals some threshold value, say117

a for response A and 0 for response B, then that particular response is made, and the118

number of time intervals of size ∆t determines the time taken for the decision to be made.119

Evidence accumulation begins at some intermediate value, 0 ≤ z ≤ a. If there is120

no bias towards either responding A or B then z = a
2 , the midpoint between the two121

response threshold values. If there is bias towards one particular response then evidence122

accumulation will start closer to that response threshold value. During each time step the123

amount of evidence added to or subtracted from x is sampled from a normal distribution124
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with mean δ and standard deviation s. This δ value is the drift rate parameter in a random125

walk model because it indicates the average rate at which evidence accumulates towards126

boundary a or 0. A positive drift rate indicates more evidence for response A, while a127

negative drift rate suggests more evidence for response B. Drift rates closer to zero lead128

to slower and more error-prone responses because the accumulation process is influenced129

predominantly by the variability in drift rate between time steps. The standard deviation130

of the drift increments is frequently fixed at either s = 1 or s = 0.1, to constrain a scaling131

property of the model (Donkin, Brown, & Heathcote, 2009b).132

The size of a reflects response caution in the random walk model. If a is small, then133

two response boundaries are close together. This means that little evidence is required134

to trigger a response, and errors due to the stochastic nature of evidence accumulation135

will occur often. On the other hand, if a is large, then fewer errors will be made, but the136

accumulation process will take longer to reach a threshold, and so responses will be slower.137

Non-decision time in the random walk model, Ter, is added to the decision time to give the138

standard RT.139

In order to account for performance in recognition memory tasks,Ratcliff (1978)140

studied a continuous time version of the random walk model. This model (see also Feller,141

1971) assumed continuous evidence accumulation by investigating the limit of small time142

steps, and small drift rates: ∆t,∆d → 0 (see BOX: HOW THE DIFFUSION MODEL143

WORKS for more detail). The accumulation of evidence in the continuous version of a144

random walk model is also referred to as a Wiener process, or Brownian motion, or a145

diffusion model. Ratcliff also made a very important addition to the basic model: to146

accommodate the empirical finding that the mean RT for error responses is often slower147

than the mean RT for correct responses in recognition memory experiments, Ratcliff added148

the additional assumption that drift rate δ varied from trial-to-trial according to a normal149

distribution with mean v and standard deviation η. This assumption allowed the model150

to account for slow error responses, via a mixture argument: correct responses arise more151

frequently from large samples of δ, which are also fast, while, incorrect responses arise most152

frequently from small samples of δ, which are also slow.153

Later experiments also showed that error responses from the one experiment could154

be both faster and slower than correct responses when the decisions were high and low in155

accuracy, respectively (P. L. Smith & Vickers, 1988; Ratcliff, Van Zandt, & McKoon, 1999;156

Ratcliff & Rouder, 1998). To accommodate this pattern, Ratcliff and Rouder borrowed157

inspiration from the model of Laming (1968), and added trial-to-trial variability in the158

starting point of evidence accumulation. Ratcliff and Rouder showed that a diffusion159

model could predict fast errors if start-point (z) was allowed to vary according to a uniform160

distribution with mean z and range sz. Having both trial-to-trial variability in start point161

and drift rate allows a diffusion process to produce both faster and slower error RTs for162

easy and hard conditions, even within a single block of experimental trials.163

To explain changes across experimental conditions in the speed of the very fastest164

responses, a third source of trial-to-trial variability was later added to the diffusion model.165



RESPONSE TIMES AND DECISION-MAKING 6

Ratcliff and Tuerlinckx (2002) added variability in non-decision time. Without this as-166

sumption, the diffusion model predicts that, regardless of drift rate, the fastest responses167

made by participants all take a similar amount of time. This property is sometimes called168

a “flat leading edge” of the RT distribution, and it is very often observed in data, but is169

not quite universal. Ratcliff and Tuerlinckx demonstrated that the diffusion model gave170

better account of empirical data when non-decision time was allowed to vary according to171

a uniform distribution with mean Ter and range st. Allowing non-decision time to vary172

across trials also helped the diffusion model account for performance in the lexical decision173

task, where relatively large changes in the leading edge were observed across stimulus-based174

conditions (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon,175

2008).176

A diffusion model with these three sources of trial-to-trial variability is now the177

most successful and widely-used model of decision-making, and is due largely to the work178

of Ratcliff and colleagues (in recognition, this particular implementation of the diffusion179

model is usually called “the Ratcliff diffusion model”). For reviews of applications of the180

diffusion model, and also open questions about its ongoing development, see B. Forstmann,181

Ratcliff, and Wagenmakers (2016); Ratcliff, Smith, Brown, and McKoon (2016).182

Apart from the Ratcliff diffusion model, there are alternative diffusion models, such183

as the Ornstein-Uhlenbeck model (OU: Busemeyer & Townsend, 1992, 1993). The OU184

process differs from the standard Wiener diffusion model because the evidence total, x,185

decays back towards a resting value, and away from response thresholds. Ratcliff and186

Smith (2004) showed that the OU model did not perform as well as the standard Wiener187

diffusion model in some data sets. Still others have investigated random walk models with188

non-standard probability calculus, most notably the “quantum random walk” (Busemeyer,189

Wang, & Townsend, 2006). This approach has the benefit of naturally explaining certain190

phenomena in which people diverge from standard probability, such as via sequential effects,191

and in consumer choices.192

Wagenmakers et al. (2007) provided simple methods for estimating rate of processing,193

response caution and non-decision time parameters for a basic Wiener diffusion model (i.e.,194

one that contains none of the three sources of between-trial variability). This method, called195

the “EZ-diffusion” model, involves the estimation of the a, δ and Ter parameters via method196

of moments, using the mean and variance of RT and the percentage of correct responses.197

The EZ-diffusion model provides an excellent alternative for users who do not want, or198

need, the complexity and estimation difficulty of the full Ratcliff diffusion model. Even199

though the EZ-diffusion model has obvious shortcomings as a theory of decision-making200

(e.g., it cannot accommodate fast or slow errors), in many situations the EZ-diffusion201

provides a good account of data, and reliable parameter estimation.202

Multiple Accumulator Models. Both random walk and diffusion models are examples203

of single accumulator models, as evidence is tracked by a single accumulator variable. In204

contrast, multiple accumulator models use an accumulator for each possible response. The205
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recruitment model (LaBerge, 1962, 1994) was one of the first to use a separate accumulator206

for each possible response. In the recruitment model, time passes in discrete steps, and on207

each step a unit of evidence is placed in just one of the available accumulators. Thus, in208

LaBerges recruitment model both time steps and the increment in evidence are discrete.209

With this exceedingly constrained structure, the recruitment model failed to account for the210

shapes of empirical RT distributions for correct and error responses, particularly for con-211

ditions in which responses are slow. Vickers and Smith’s accumulator model (P. L. Smith212

& Vickers, 1988; Vickers, 1979) also assumed discrete, equally-spaced time periods, but213

assumed that the amount of evidence incremented between these time periods is sampled214

from a continuous distribution (see also the PAGAN model: Vickers & Lee, 2000a, 1998).215

Conversely, the Poisson counter model (Pike, 1966, 1973; LaBerge, 1994; Van Zandt et216

al., 2000; Townsend & Ashby, 1983) assumes that the amount of evidence accumulated217

on each step is fixed but that the time intervals in which evidence arrives varies randomly218

from step-to-step. We now turn to a more detailed discussion of some of these models.219

In the accumulator model of P. L. Smith and Vickers (1988), evidence is accumulated220

at equally-spaced time steps. At each time step, the amount of evidence to accumulate is221

sampled from a normal distribution. This evidence value is then compared to a criterion222

value, and if the evidence is larger than the criterion then the difference between the223

criterion and the evidence value is added to counter B, and if the evidence is smaller than224

the criterion then counter A is increased by the same difference. When the evidence in225

either counter reaches a response threshold then that response is made, and the time taken226

to make the response is the number of time steps multiplied by a constant which converts227

time steps to seconds. The distance of the mean of the normal distribution of evidence228

values from the criterion value is equivalent to the drift rate in the diffusion model, in229

that it reflects the average amount of evidence accumulated per time. Smith and Vickers230

showed that an accumulator model with three sources of between-trial variability provided231

a good account of empirical data. Firstly, the mean of the evidence accrual distribution232

was assumed to vary from trial-to-trial according to a normal distribution. Secondly, non-233

decision time was assumed to vary across trials. Thirdly, the response threshold was allowed234

to vary from trial-to-trial according to an exponential distribution. These three sources of235

variability correspond closely to the three sources of between-trial variability in Ratcliff’s236

diffusion model.237

In the Poisson counter model (LaBerge, 1994; Merkle, Smithson, & Verkuilen, 2011;238

Pike, 1973; Van Zandt et al., 2000) it is assumed that equal amounts of evidence arrive239

on each time step, but that the time steps vary in size. The time between when evidence240

arrives in each accumulator is assumed to be exponentially distributed with separate rate241

parameters for each possible response. Because the time between evidence arrival is expo-242

nential, the rate at which evidence increases in each accumulator is distributed according243

to a Poisson process. The evidence accumulation process continues until evidence in one of244

the accumulators reaches a response threshold. Three sources of between-trial variability245

have been added to the Poisson counter model: in non-decision time; in the rate of arrival246
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of information for each counter; and in the response thresholds. Despite the addition of247

these sources of variability, the Poisson counter model is unable to produce both fast and248

slow errors within experimental blocks (Ratcliff & Smith, 2004; Van Zandt et al., 2000).249

Usher and McClelland (2001) developed their “leaky competing accumulator” (LCA)250

in part to address the shortcomings of previous multiple-accumulator models, and partly251

also to integrate findings about the neuroscience of decision-making with cognitive model-252

ing. The LCA model assumes separate accumulators for each choice response, like other253

multiple-accumulator models, but also allows evidence in favor of one response to “count254

against” evidence in favor of other responses, like in the single-accumulator models. The255

LCA operationalizes this assumption by adding lateral inhibitory connections to an OU256

model. These connections mean that evidence in one accumulator inhibits the rate of evi-257

dence accrual in the other accumulator(s), at a rate proportional to the current amount of258

evidence in the inhibiting accumulator. In an opposing force, the LCA model also assumes259

that accumulators “self excite” – that is, a tendency to grow in activation at a rate propor-260

tional to current activation. The LCA does not require trial-to-trial variability in drift rate261

to predict slow error RTs, because of the lateral inhibitory assumption. The LCA was also262

able to predict fast error RTs in the same way as other models, by assuming that the start263

point of evidence accumulation in each accumulator varies randomly from trial-to-trial.264

Brown and Heathcote (2005) showed that a simplified version of the leaky competing265

accumulator model, the ballistic accumulator (BA) model, was able to account for all266

benchmark choice RT phenomena the shape of RT distributions, the speed-accuracy trade-267

off, as well as both fast and slow errors. The only difference between the BA and Usher268

and McClelland’s (2001) LCA model is that there is no moment-to-moment variability in269

the evidence accumulation process. In other words, evidence from the environment was not270

assumed to follow a Wiener or OU process, but was assumed to be noiseless (“ballistic”,271

although those authors should probably have chosen a better word). With between-trial272

variability in drift rate, and in the start point of evidence accumulation, passive decay273

and self-excitation of accumulated evidence, and lateral inhibition between accumulators274

that the BA model was able to predict all the regular benchmark phenomena, and also275

accommodate empirical data from a simple discrimination task.276

Taking this simplification further, Brown and Heathcote (2008) developed the lin-277

ear ballistic accumulator model (see BOX: HOW THE LBA MODEL WORKS for more278

details). In the LBA, accumulation was assumed to be free of leakage, excitation and279

lateral inhibition. All that remained in the model was deterministic linear evidence ac-280

cumulation, with two sources of trial-to-trial variability: in drift rate and in start points.281

Quite surprisingly, the LBA was capable of accounting for the shape of RT distributions,282

the speed-accuracy trade-off, as well as the relative speed of errors. The mathematical283

simplicity of the LBA means that it is easy to apply to data, and amenable to advanced284

statistical approaches.285

A modern multiple-accumulator model is the Ising decision-maker developed by286

Verdonck and Tuerlinckx (2014). This theory is based on neurally inspired ideas similar287
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to other competitive accumulator models, such as the LCA (Usher & McClelland, 2001).288

The Ising decision maker begins with the assumption that there are two pools of neurons289

representing two different decision options, and that these pool compete in a winner-takes-290

all fashion. The Ising decision-maker distills many of the important attributes of detailed,291

neurally plausible models of decision-making (such as that described byLo & Wang, 2006)292

into a simpler form. A key property of the Ising decision-maker is that these neurons are293

reduced to a impoverished representation as simply binary on/off elements. This reduction294

allows for a tractable analysis of the entire competing system, which has not been possible295

for other neurally-inspired accumulator models.296

Interim Summary297

The above was a brief and selective summary of decades of work in the development298

of RT models. Below, the discussion is continued, divided into two sections: Theory and299

Measurement. In the first section, we focus on RT models as a route to understanding the300

way in which humans make decisions. We begin by summarizing the core empirical data301

patterns that have helped discriminate between RT models to date. We then review recent302

approaches to testing RT models , and discuss some novel extensions to RT models. We303

finish this section with an overview of the connections between RT models and neuroscience.304

In the second section, we discuss the use of RT models as a measurement tool. In recent305

years, RT models have been used increasingly often to measure the latent variables assumed306

to underlie decision-making, including ability, caution, bias, and non-decision processes. In307

this section, we discuss the issues associated with using such relatively complex models as308

measurement models.309

Response Time Models as Theory Development310

Certain empirical phenomena have proven particularly important in directing the de-311

velopment of RT models as explanations of the cognitive processes which underpin decision-312

making. These phenomena have helped to narrow down the field of plausible theoretical313

explanations, and also provided evidence in favor of particular model elements across a314

wide variety of different theories.315

Speed-Accuracy Tradeoff316

Except for the ballistic theories, RT models account for the SAT because increased317

accumulation time allows the effects of within-trial variability in information accumulation318

to be integrated out. The simplest models, such as the EZ-diffusion and other early versions319

of the diffusion and random walk models, have only one source of variability – within-trial320

variability in evidence accumulation. Since this source can be integrated out by raising the321

decision threshold, those models predict perfect asymptotic accuracy for all decisions. That322

is, a decision-maker could achieve any desired accuracy by simply making sufficiently slow323

decisions. However, less than perfect accuracy is almost always observed in practice, even324
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with unlimited decision time. At least two suggestions have been made to allow stochastic325

models to account for less than perfect asymptotic accuracy. Usher and McClelland (2001)326

proposed that accumulation is “leaky” so that information is lost during accumulation,327

and hence accuracy is imperfect (although asymptotic accuracy in information-controlled328

paradigms can still be infinite (Busemeyer & Townsend, 1992). Ratcliff (1978) added329

between-trial variability in the input to the diffusion model, thus predicting imperfect330

asymptotic accuracy. That is, on some trials, the stimulus will be erroneously encoded as331

favoring the wrong response, and integrating out the within-trial noise will not redress the332

problem on those trials.333

The ballistic models (Brown & Heathcote, 2008, 2005) produce a speed-accuracy334

tradeoff via a different mechanism. In those models, where there is no within-trial variabil-335

ity in evidence accumulation, extra integration time instead allows the input to overcome336

noise in the starting points. To illustrate, consider the example LBA model accumulation337

trajectories in Figure 5. The unit with a smaller input (dashed line) started with larger338

activation, but with extra integration time, it was overtaken by the unit with a larger339

input. If the response criterion (horizontal line) were set very low, the model would make340

the wrong response, because the accumulator corresponding to the wrong response begins341

with a slight advantage and would reach a low response criterion first. Raising the re-342

sponse criterion (to the value shown) allows sufficient integration time for the accumulator343

corresponding to the correct response to overcome its initial disadvantage. Extending inte-344

gration time indefinitely allows all effects of start point variability to be removed. However,345

even then, asymptotic accuracy is still imperfect because of variability in input strength.346

Fast and Slow Errors347

The addition of variability in drift rates fixes another problem for the earliest diffusion348

models, which included only Gaussian accumulation noise: they predicted equal correct349

and error RT distributions. Equal correct and error RTs are occasionally observed but350

typically, when response accuracy is emphasized and the decision to be made is relatively351

difficult, error RTs are slower than correct RTs, a phenomenon we will call “slow errors”.352

The addition of between trial variability in drift rate allows the diffusion model to produce353

slow errors (Ratcliff, 1978). In contrast, the LCA model of Usher and McClelland (2001)354

can produce equal correct and error RTs or slow errors, even though it does not include355

between-trial variability in parameters. The LCA model makes these predictions due to356

the inclusion of lateral inhibition and leakage.357

When simple decisions are required, and response speed is emphasized, an opposite358

pattern occurs: error RTs are typically faster than correct RTs, called “fast errors” (e.g.,359

Ratcliff & Rouder, 1998; Ratcliff et al., 1999; see Luce, 1986, p.233 for a review). Fast360

errors require a third source of variability to be incorporated into the diffusion model,361

between-trial variability in either the criterion or start point (given reasonable constraints362

on the variability distributions, these changes are identical when integration is linear, as in363

the diffusion). Start point variability was originally suggested by Laming (1968) as being364
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caused by pre-stimulus accumulation. Usher and McClelland (2001) also incorporated365

between-trial start point variability into their model in order to account for fast errors,366

although they did not fit this version of their model to data from an information controlled367

task, as only slow errors were observed in those data.368

Figure 2. Mean RT (symbols) and predicted mean RT from the LBA model (lines) for three
subjects from Ratcliff and Rouder’s (1998) experiment. The upper and lower lines are for accuracy
and speed emphasis conditions, respectively. Within each condition, there are 33 separate points –
one for each level of stimulus brightness. The right side of each plot represents correct responses to
very easy-to-classify stimuli, and the left side of each plot represents (very rare) incorrect responses
to the same stimuli. The center of each plot shows data from difficult stimuli, which were nearly
equally often classified correctly and incorrectly. Bars indicate standard error.

A pattern that has proven particularly diagnostic for selecting models of choice RT369

is a crossover effect, in which faster and slower error RTs are observed in easy and hard370

stimulus discrimination conditions respectively, even when these conditions are randomly371

intermixed from trial to trial. Hence, general choice RT models must be able to accommo-372

date crossovers by changing only stimulus-driven parameters, and not parameters which373

require strategic control from the decision-maker. Figure 2 illustrates the crossover pattern374

observed by Ratcliff and Rouder (1998), using a plotting style which has become important375

in RT research, called a “latency-probability” plot (LP plot: Audley & Pike, 1965). La-376

tency probability plots show mean RT as a function of the probability of a response. Points377

on the left of the graph represent the lower probability (error) responses and complemen-378

tary points on the right of the graph represent the higher probability (correct) responses379

from the same experimental conditions. Sometimes, LP plots are expanded to show more380

than just the mean RT, by plotting several quantiles of the RT distributions – these are381

called “quantile-probability”, or QP, plots.382
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The “crossover” pattern in the speed of correct and incorrect choices is evident in383

Figure 2 in several ways. Data from the accuracy-emphasis condition (upper symbols384

in each plot reveal uniformly slow errors: each data point on the left side of the graph,385

representing correct response mean RT for some probability p > .5 is a little faster than386

the corresponding speed for incorrect responses, plotted at 1−p. The data from the speed-387

emphasis condition for subject JF (left panel, lower data) show uniformly fast errors:388

points plotted at probability p > .5 are always a bit slower than the corresponding errors389

plotted at 1 − p. The speed-emphasis data from subject NH shows a crossover pattern.390

For every easy decisions, the correct responses (plotted near p = 1) are slower than their391

corresponding error responses (plotted near p = 0). For difficult decisions, plotted near392

the middle of the graph, incorrect responses (such as those at p = .4) are slower than the393

corresponding correct responses (which are plotted at p = .6). Most modern RT models are394

able to accommodate this pattern, by including between-trial variability in various model395

parameters.396

Choices between more than two options.397

The vast majority of response-time and decision-making studies have used binary398

decision tasks, for example “target vs. distractor”, “bright vs. dark”, “many vs. few”,399

“left vs. right”, and so on. Nevertheless, there are a substantial number of studies that400

have investigated decisions between more than two response options, and these experiments401

have yielded their own set of important empirical phenomena. The single most important402

empirical result from multiple-choice experiments is Hick’s Law (Hick, 1952; Hyman, 1953),403

which describes how decisions become steadily slower with response alternatives. Hick’s404

Law can be expressed in a number of ways, but the most simple is that the mean time405

taken to select a response (i.e., RT ) and the logarithm of the number of choice alternatives406

(K) are linearly related:407

RT = a+ b log2 (K). (1)

Hick’s Law describes data from a wide range of paradigms including speeded percep-408

tual judgments (e.g., Leite & Ratcliff, 2010), eye saccades (e.g., anti-saccades in Kveraga,409

Boucher, & Hughes, 2002; K.-M. Lee, Keller, & Heinen, 2005), absolute identification (e.g.,410

Lacouture & Marley, 1995; Pachella & Fisher, 1972), manipulations of stimulus-response411

compatibility (e.g., Brainard, Irby, Fitts, & Alluisi, 1962; Dassonville, Lewis, Foster, &412

Ashe, 1999), and has even been observed in monkeys (Laursen, 1977) and pigeons (Vickrey413

& Neuringer, 2000; for additional examples in other paradigms see Brown, Steyvers, &414

Wagenmakers, 2009; Teichner & Krebs, 1974; ten Hoopen, Akerboom, & Raaymakers,415

1982).416

Hick’s Law has important implications for theories of decision-making and RT. The417

single-accumulator models of decision-making, such as the random walk and diffusion mod-418

els, are naturally restricted to making predictions about only binary choices. In contrast,419

multiple-accumulator models naturally extend to multiple choice tasks: for a choice be-420
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tween N different responses, the standard assumption is to have N racing accumulators.421

However, more complex arrangements are possible, for example with accumulators in pairs422

making pairwise comparisons between different response options. The most pressing diffi-423

culty with the standard account is that it fails to predict Hick’s Law. All else being equal,424

if more response options are added, then more accumulators race to the threshold, and425

so the probability that one of them will finish very quickly becomes larger. This effect426

is called “statistical facilitation”, and predicts the opposite of Hick’s Law, faster RT with427

more choices.428

Many different ideas have been proposed to address this shortcoming. Usher, Olami,429

and McClelland (2002) proposed that RTs slowed in larger choice sets simply because430

decision-makers became more cautious, and lifted their response thresholds. Hawkins,431

Brown, Steyvers, and Wagenmakers (2012) investigated models based on continuous hy-432

pothesis testing of the different response alternatives, which led to naturally slower re-433

sponses with more choices. Other models have been developed for specific and interest-434

ing multiple-choice paradigms, such as absolute identification (Brown, Marley, Donkin, &435

Heathcote, 2008; Lacouture & Marley, 1995) and confidence ratings (Ratcliff & Starns,436

2013, 2009; Pleskac & Busemeyer, 2010). A common assumption in these models is some437

form of normalization - the total amount of some resource is spread across the different re-438

sponse options, thereby reducing processing speed when more response options are added,439

and accommodating Hick’s Law.440

Teodorescu and Usher (2013) made a systematic and thorough investigation of many441

different ways of instantiating inhibition. When different response alternatives inhibit442

one another, then adding more alternatives creates more inhibition, slower responses, and443

Hick’s Law. Inhibition can be added either at the level of competition between outputs,444

or inputs, or both. It can be added via normalization, or lateral competition, or other445

methods. Teodorescu et al. investigated all of these options, and concluded that only a446

select few of them were able to predict Hick’s Law.447

One of the challenges faced in research into multiple choice decisions and Hick’s448

Law concerns the decision tasks used. It is not easy to generate a decision task that449

allows a large number of alternative decisions (say, more than eight) without introducing450

unwanted elements to the task, such as large memory loads, or perceptual limitations.451

These problems limit the extent to which data from multiple-choice tasks can be used to452

draw general conclusions about decision-making; conclusion which apply beyond just the453

particular task in question. Similar concerns apply to the “extended judgment” task, used454

by Teodorescu and Usher (2013), Hawkins et al. (2012), Usher and McClelland (2001), and455

many others since its introduction by Vickers (1979). This task slows down decision-making456

by presenting a long series of elements, and having the decision-making make a response457

based on the statistics of the whole sequence. This set-up allows very detailed analysis458

and powerful model discrimination (Pietsch & Vickers, 1997), but leaves open questions459

about the generality of the conclusions to more standard decision-making. Teodorescu and460

Usher (2013) were able to make similarly powerful model discriminations, but also only461
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by assuming very particular mappings between physical stimulus magnitudes and internal462

psychological magnitudes, and between potential responses and model accumulators.463

A different, and probably specialized, kind of choice between more than two options464

is about decision confidence. A long line of research has investigated the ways in which465

confidence about a decision is influenced by properties of the decision stimulus, and how the466

confidence and decision questions are asked. Evidence accumulation models with multiple467

racing accumulators have a natural way in which confidence might be expressed, sometimes468

known as the “balance of evidence” hypothesis (Vickers, 1979; Vickers & Lee, 2000b). The469

balance of evidence hypothesis is that the confidence in a decision is determined by the470

difference between the amount of evidence in the winning vs. losing accumulators. Difficult471

decisions will typically lead to the losing accumulator having almost as much accumulated472

evidence as the wining accumulator, and this small difference will engender low confidence473

in the decision.474

In contrast to the relatively settled notions and broad agreement about the basic475

components of decision making by evidence accumulation, there is disagreement about476

the components of confidence judgments. Pleskac and Busemeyer (2010) have developed477

a modern account of decision confidence based on the balance of evidence hypothesis,478

and this account fits a wide range of data from decision making and confidence rating479

experiments. However, Ratcliff and Starns (2013) and Moran, Teodorescu, and Usher480

(2015) have developed quite different models of confidence that account for many of the481

same phenomena, and it is not yet clear which of these different approaches is best. While482

Pleskac and Busemeyer’s model hinges on the balance of evidence hypothesis, Ratcliff and483

Starns treat a confidence rating task as a choice between many alternatives representing484

different categories of confidence (“low”, “medium”, ...) and Moran et al. employ collapsing485

decision boundaries (see next section).486

Efforts to distinguish different accounts of confidence have focussed on the identifi-487

cation of qualitative data patterns that might be accommodated by just one of the models,488

and not the others. These empirical “benchmarks” (or “hurdles”) that models of confidence489

must meet have been growing in number and complexity, and there is not yet a resolution490

to the debate. The difficulty of the problem has been compounded by the use of different491

basic empirical paradigms, which seem to favor one account over another. For example,492

Pleskac and Busemeyer (2010), and others, ask participants to provide a confidence rating493

directly after making a choice: e.g. a participant might first decide in favor of response494

“A”, and then describe their confidence as “high”. In contrast, Ratcliff and Starns (2013)495

ask participants to make their choice and their confidence judgment simultaneously: e.g. a496

participant might choose the response option labeled “A: high”, as opposed to “B: high”,497

or “A: medium” and so on. Both procedures have advantages, but it is not easy to map498

data from one paradigm onto theories intended for the other.499
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Non-stationary decision processes.500

All of the RT models reviewed so far are “time homogeneous” – they make the501

assumption that the rules of evidence accumulation and decision processing do not change502

as decision time passes. For many decades, such models have provided detailed accounts503

of decision-making data. More complex time inhomogeneous models have recently been504

proposed and become especially popular in some neurophysiological studies of primates505

(e.g., Churchland, Kiani, & Shadlen, 2008; Ditterich, 2006a; Drugowitsch, Moreno-Bote,506

Churchland, Shadlen, & Pouget, 2012) but not all (e.g., Purcell, Schall, Logan, & Palmeri,507

2012). These models are also sometimes known as “non-stationary” or “dynamic” decision508

models, reflecting that they implement a constantly-changing decision strategy. The most-509

explored approach is to have the decision boundaries decrease with decision time, which510

means that the quantity of evidence required to trigger a decision decreases with time.511

This is often called a “collapsing bounds” assumption.512

Diffusion models typically assume fixed decision boundaries; the amount of evidence513

required to trigger a decision does not change with time (see the response threshold bound-514

aries in Figures 4 and 5). This approach is statistically optimal in that it leads to the fastest515

mean decision time for any fixed error rate in a single condition, and constant information516

cost over time (Wald & Wolfowitz, 1948). The collapsing boundaries assumption suggests517

instead that the diffusion model’s boundaries move closer together, or that the LBA model’s518

boundaries move closer to zero as decision time passes (Bowman, Kording, & Gottfried,519

2012; Ditterich, 2006a, 2006b; Drugowitsch et al., 2012; Milosavljevic, Malmaud, Huth,520

Koch, & Rangel, 2010; Thura, Beauregard–Racine, Fradet, & Cisek, 2012). Collapsing521

boundaries are also statistically optimal under different assumptions about the stimulus522

environment, the decision-maker’s goals and the cost of passing time (Ditterich, 2006a).523

While the collapsing boundaries idea is interesting, and has attractive statistical524

properties regarding optimality, the data mostly speak against this assumption. In the most525

extensive investigation so far, Hawkins, Forstmann, Wagenmakers, Ratcliff, and Brown526

(2015) compared models with static versus dynamic response boundaries in a large survey.527

Overall, data from nine experiments provided strong support for the conventional, fixed528

bound model. There was evidence in favor of collapsing boundaries or urgency signals for a529

small proportion of human subjects (mostly from one experiment). Interestingly, there was530

substantial support for models with collapsing boundaries in studies using monkeys. This531

result suggests caution in generalizing from non-human primate studies of decision-making532

to human psychology.533

Recently, the basic understanding of decision-making based on evidence accumulation534

has been challenged by another interesting proposal of non-stationarity, from Cisek et al.535

(2009) and Thura et al. (2012). This is the “urgency gating model”, which goes beyond non-536

stationarity and drops the central component of the EAMs, by assuming that environmental537

evidence is not accumulated over time. Instead, the UGM tracks novel sensory information,538

which varies from moment-to-moment, and multiplies this information by an urgency signal539
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that grows with decision time. These multiplied samples are simply monitored until any540

sample exceeds a decision threshold. The UGM is an original and insightful proposal541

that has already had important impacts on the field (for similar approaches see Hockley542

& Murdock, 1987, and accompanying critique from Gronlund & Ratcliff, 1991). Despite543

the intrinsic interest of the proposal, there are mathematical issues yet to be resolved544

with the idea of urgency gating (Hawkins, Wagenmakers, Ratcliff, & Brown, 2015). More545

importantly, the evidence from both human and monkey data seem to support urgency546

gating models even less than they support collapsing bounds models (Hawkins, Forstmann,547

et al., 2015).548

Response Times in Cognitive Science and Neuroscience549

The field of cognitive neuroscience initially sought to map changes in the brain as they550

related to cognition, using neural measurements obtained through event–related potentials551

(ERPs; e.g., Sutton, Braren, Zubin, & John, 1965; Hillyard, Hink, Schwent, & Picton,552

1973), the magnetoencephalogram (MEG; e.g., Brenner, Williamson, & Kaufman, 1975),553

functional magnetic resonance imaging (fMRI; e.g., Belliveau et al., 1991), and single–554

unit recordings in non–human primates (e.g., Hanes & Schall, 1996; Schall, 2001; Shadlen555

& Newsome, 1996). As progressively more precise measures of the inner workings of the556

brain became available, researchers have become increasingly capable at understanding the557

neural determinants of cognitive processes.558

Some research paradigms have well–specified and tractable mathematical models of559

cognition, and also well–developed methods for neural measurement, including decision560

making. An important change in the development of decision–making models over the561

past twenty years has been a steady “tightening” of the link between neural and behavioral562

data (for discussion of linking behavioral and neural data, see Teller, 1984). Early models563

of simple decision–making linked behavioral and neural data loosely, by constraining the564

development of behavioral models to respect data from neural measurements. For example,565

the leaky competing accumulator model developed by Usher and McClelland (2001) was566

structurally constrained to include components supported by neural investigations, such as567

lateral inhibition between accumulating units, and passive decay of accumulated evidence.568

These links were included as part of the model development process, and thereafter there569

was no further attempt to link neural with behavioral data.570

Subsequent models tested the links via qualitative comparisons between predictions571

for corresponding neural and behavioral data sets. This kind of linking was very com-572

mon in early research into decision–making with fMRI methods, in which predictions were573

based on the assumption that an experimental manipulation will influence one particular574

model component, which leads naturally to predictions for the behavioral data, and also575

for the neural data (via the hypothesized link). Predictions most frequently take the form576

“in condition A vs. B, behavioral measure X should increase while neural measure Y de-577

creases”. Support for the predictions is taken as evidence in favor of the model, including578
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the hypothesized link. As an example, Ho, Brown, and Serences (2009) tested predictions579

generated from decision–making models via hypothesized neural links. In one part of their580

study, Ho et al. manipulated the difficulty of a decision-making task and hypothesized581

that this should result in a change in the speed of evidence accumulation in an evidence582

accumulation model. By examination of the model coupled to a standard model for haemo-583

dynamic responses, Ho et al. generated predictions for the blood–oxygen–level dependent584

(BOLD) response profile within regions that are involved in perceptual decision making.585

These predictions were compared with data from an fMRI experiment, which lent support586

to some accounts over others.587

Linking via the testing of qualitative hypotheses was later surpassed by quantita-588

tive approaches, which provided a tighter link between neural and behavioral data. The589

most common example of quantitative linking in decision–making models takes parame-590

ters of the decision–making model, estimated from behavioral data, and compares them591

against the parameters of a descriptive model estimated from the neural data. For example,592

B. U. Forstmann et al. (2008) correlated individual subjects’ model parameters, estimated593

from behavioral data, against blood–oxygen–level dependent (BOLD) parameter estimates;594

subjects with large changes in threshold parameters also showed similarly large changes in595

BOLD responses.596

Most recently, there have been efforts to link neural and behavioral decision–making597

data even more tightly, by combining both data sets in a single model–based analysis.598

This approach has culminated in models such as that developed by Purcell et al. (2010)599

which uses neural measurements as a model input in order to predict both behavioral600

measurements and a second set of neural measurements. This provides a simultaneous601

description of neural and behavioral data sets, as well as explicating the links between602

them. A less detailed, but more general approach was developed by Turner, Forstmann, et603

al. (2013), in which neural and behavioral models are joined by allowing their parameters604

to covary. Turner, Forstmann, et al.’s approach is a “joint” model, in the sense that it605

allows symmetric information flow: behavioral data can influence the neural parameter606

estimates, and neural data can influence the behavioral parameter estimates.607

Examples of Cognitive Neuroscience linked with RT Models. The following is a brief608

and incomplete review of research that links cognitive models of RT and decision-making609

with neuroscientific data. The list is organized, approximately, in increasing order of610

“tightness” in the link between the two data streams. Some of the material is an abridged611

version of a more complete review, from de Hollander, Forstmann, and Brown (2015).612

The leaky competing accumulator model (LCA) of Usher and McClelland (2001)613

included structural elements such as mutual inhibition between competing accumulators,614

motivated by neural data which demonstrate the prevalence of inhibitory connections be-615

tween nearby neurons within the same cortical stratum. Evidence in favor of these links was616

inferred by the observation that the resulting cognitive model provided a good fit to behav-617

ioral data. P. L. Smith (2010) showed that a plausible model of how neurons encode sensory618
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information at very short time scales (a Poisson shot noise process), converges, under rea-619

sonable assumptions, to a Ornstein-Uhlenbeck velocity process. The integrated version of620

this process is, in turn, indistinguishable from a standard diffusion model (Ratcliff, 1978;621

Ratcliff & McKoon, 2008).622

Hanes and Schall (1996) recorded single-cell activity in the frontal eye fields (FEF)623

in behaving macaques. The activity of “movement neurons” predicted the execution of624

saccades. Hanes and Schall (1996) showed that the ramping activity of these neurons625

preceding a saccade always ended with the same firing rate, but the rate of increase of626

firing rate was variable. Hanes and Schall (1996) interpreted their findings as showing that627

variability in RT could be explained by variability in drift rate as opposed to variability628

in threshold of the decision-making process. More and more electrophysiological work has629

since been interpreted in the framework offered by evidence accumulation models, reviewed630

by Gold and Shadlen (2001) and B. U. Forstmann et al. (2008).631

Links between neural data and evidence accumulation models have also been drawn632

using fMRI methods. For example, Ho et al. (2009) hypothesized that areas that implement633

evidence accumulation during a perceptual decision-making task should show delayed and634

longer activation during difficult trials, compared to easy trials. They identified areas where635

the shape of the HRF differed substantially between conditions, by testing for interactions636

between task difficulty and BOLD activity at a set of multiple timepoints throughout the637

trial. This prediction was supported, at least in averaged data.638

An interesting way to link evidence accumulation models of RT with neural data639

is by relating variability between participants in parameter estimates with variability be-640

tween those same participants in neuroimaging data. For example, in an fMRI study of641

decision-making, B. U. Forstmann et al. (2008) instructed subjects to stress either the642

speed or accuracy of their decisions. The difference in BOLD-activity between accuracy-643

and speed-stressed trials in the striatum and the pre-supplementary motor area (pre-SMA)644

was correlated across subjects with the difference in model parameters related to response645

caution, estimated from behavioral data via the LBA model. In other words, participants646

who made large changes in their cognitive settings (for speed vs. caution) also showed647

large changes in fMRI responses, and vice versa. Using a similar across-subjects approach,648

Mulder, Wagenmakers, Ratcliff, Boekel, and Forstmann (2012) used probabilistic payoffs649

to shift the decision biases of participants. As usual, these shifts were explained in a650

perceptual decision making model (the diffusion model) as a shift in the starting point651

parameter – responses favored by bias were represented as having starting points for evi-652

dence accumulation that were closer to the response threshold. Mulder et al. showed that653

estimates of the start point, taken from behavioral data, were correlated with the difference654

in fMRI activity between biased and unbiased trials in frontoparietal regions involved in655

action preparation.656

An alternative to the between-subjects approach is to link within-subject variability657

from neural and behavioral data by splitting the data on a neural measure and fitting658

a cognitive model to the subsets of behavioral data. Ratcliff, Philiastides, and Sajda659
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(2009) studied a perceptual decision-making task (houses vs. faces) and identified EEG660

components that classified trials as hard or as easy. Ratcliff et al. took trials from each661

single stimulus difficulty condition (in which nominal stimulus difficulty was constant)662

and applied a median split based on the amplitude of the EEG-component. Even though663

nominal stimulus difficulty was identical, estimated drift rates were lower in the trials with664

lower amplitude than trials with a higher EEG amplitude.665

Even more recent approaches to linking evidence accumulation models to neural data666

start with the neural signal, and use this as input to an extended evidence accumulation667

model. Cavanagh et al. (2011) estimated, separately for each trial in a decision-making668

experiment, the power in the theta frequency band from recorded EEG signals. These669

single-trial estimates of theta power were then used to inform parameter estimates in an670

extended version of the diffusion model (HDDM; Wiecki, Sofer, & Frank, 2013). This671

model allowed different estimates of the threshold parameter on different trials, and a co-672

variate model to assess the association of single-trial theta power with single-trial threshold673

estimates.674

A similar approach to that of Cavanagh et al. was developed in parallel by Turner,675

Forstmann, et al. (2013) (see also Turner, van Maanen, & Forstmann, 2014). Also in this676

“joint modeling approach”, neural measures were used in addition to behavioral measures677

as input to an extended cognitive model. Turner et al.’s approach took the covariate-based678

analysis further, allowing for a general covariance matrix to link parameters of a behavioral679

model (the LBA model of decision-making) with the parameters of a neural model (a GLM).680

This approach supports more exploratory analyses, allowing the identification of different681

mappings from cognitive parameters to neural measures by studying the covariance matrix682

of the joint normal distribution; if a cognitive parameter is related to some neural measure,683

the covariance parameter that links them will be non-zero. Turner, Forstmann, et al. (2013)684

showed, using the data of B. U. Forstmann et al. (2010), that this approach can find robust685

correlations between white-matter strength between pre-SMA and striatum, measured by686

diffusion-weighted magnetic resonance imaging (dMRI).687

Response Time Models as Measurement Tools688

Most RT models have some parameters that share a common interpretation in terms689

of the processes that underlie simple decisions: ability, caution, bias, and non-decision690

processes. These parameters can be used to understand the influence of particular ex-691

perimental manipulations, real-world interventions, clinical disorders, or other differences692

of interest. The general approach of using the parameters of quantitative models to de-693

scribe differences that underlie empirical data has been dubbed “cognitive psychometrics”694

(J. B. Smith & Batchelder, in press; Batchelder, 1998; Batchelder & Riefer, 1999). RT695

models have been used extensively for this purpose, with the popularity of this approach696

increasing.697

The typical approach is to run an experiment in which one or more variables are698
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manipulated. This manipulation will have some influence on the joint distribution of699

RT and accuracy. RT models are then fit to these empirical data, and the differences700

across experimental conditions are re-interpreted in terms of the model’s parameters. This701

approach relies on being able to estimate the parameters of RT models, and also being able702

to discern which parameters of the models differ across experimental conditions. We now703

give a brief overview of existing methods for both issues.704

Parameter Estimation705

In recent years, with the benefits of cognitive psychometrics becoming more apparent706

to those outside the field of quantitative psychology, there have been valiant efforts to make707

the model estimation process more accessible. Some early attempts included written guides708

and tutorials on fitting RT distributions (Van Zandt, 2000; P. L. Smith, 2000; Ratcliff709

& Tuerlinckx, 2002). Taking a slightly different approach, Wagenmakers et al. (2007)710

offered the EZ-diffusion model, and the EZ2 model (Grasman, Wagenmakers, & van der711

Maas, 2009), as simple ways to estimate parameters for a choice RT model. By working712

with greatly-simplified RT models, Wagenmakers et al. were able to provide relatively713

simple formulae that transform mean RT, variance of RT and the proportion of correct714

responses into estimates of the drift rate, response threshold and non-decision time. The715

simplified models allowed no between-trial variability (i.e. in drift rate, start point or non-716

decision time). Such a simplification means that the model no longer gives a full account717

of benchmark choice RT data. In practice, however, this cost is offset by the fact that718

researchers in applied areas outside of quantitative psychology benefit greatly from being719

able to model their data using relatively simple calculations which require no iterated720

fitting.721

Around the same time as the EZ-diffusion model became available, software which722

made it easier to use the full Ratcliff diffusion model also began to appear: DMAT,723

(Vandekerckhove & Tuerlinckx, 2008), and fast-DM (Voss & Voss, 2007, 2008). The latest724

iterations of these packages offer a full range of frequentist methods for estimation including725

maximum-likelihood, χ2, and Kolmogorov-Smirnov methods. While maximum-likelihood726

methods are most efficient, in theory, RT models are particularly susceptible to fast outliers727

(i.e., responses quicker than those yielded by the true decision-making process). As such,728

the χ2 and Kolmogorov-Smirnov methods tend to be more popular.729

Recent years have seen the rise of Bayesian methods for parameter estimation730

(M. D. Lee & Wagenmakers, 2014) for cognitive models. Vandekerckhove, Tuerlinckx,731

and Lee (2011) give an overview of hierarchical Bayesian estimation for the Ratcliff diffu-732

sion model. Bayesian approaches have a clear advantage over frequentist approaches in that733

they give the full distribution of likely parameter values, in addition to allowing one to in-734

corporate prior information about parameter values (e.g., Matzke & Wagenmakers, 2009).735

Furthermore, Bayesian methods make it easier to investigate hierarchical extensions of the736

model, wherein the estimation of an individual’s parameters is informed by the estimates737

of the other participants in the experiment. Wiecki et al. (2013), Wabersich and Vandek-738
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erckhove (2014), (Turner, Sederberg, Brown, & Steyvers, 2013) and Donkin, Brown, and739

Heathcote (2009a) have provided code and their own approaches to hierarchical Bayesian740

methods for estimating the parameters of RT models. Very recently, and for the first time,741

all of the important equations for both the diffusion model and the LBA model have been742

brought together in a single computer package with coherent programming structure across743

the models https://cran.r-project.org/web/packages/rtdists/. This is a free and744

open source package for the free and open source statistical language R (R Core Team,745

2015), and includes joint density and cumulative density function for both models, as well746

as random sampling functions.747

Although the methods for estimating parameters have become increasingly sophis-748

ticated, most variants of RT models are relatively complex. Almost all RT models suffer749

from an identifiability problem (above and beyond the simple scaling problem, see Donkin750

et al., 2009b). Parameter tradeoffs mean that there are multiple sets of parameter values751

that can fit data almost equally well. As such, the estimation of the parameters in most752

RT models requires specifically designed experiments. Typically, multiple within-subject753

experimental conditions are run, and most RT models require that many of the model’s754

parameters be held constant across those conditions. Even under such conditions, it is755

important that dozens of trials are collected per condition, though hierarchical approaches756

can be of particular use when sample sizes are small. With experimental designs less757

well-suited to RT modeling, parameter estimates should be interpreted with caution.758

Theory Development vs. Cognitive Psychometrics. In general, we recommend that759

researchers err towards using simpler versions of RT models when attempting to do cog-760

nitive psychometrics. It is highly likely that certain assumptions in more complex RT761

models are true. For example, no one would question that there is trial-to-trial variability762

in the time to make a motor response once a decision is made. Further, as we increase763

the quality of our data, our models of decision-making are likely to become increasingly764

complex. Therefore, in terms of theory development, more complex models are inevitable.765

It is important to keep in mind, however, the distinction between a model whose766

purpose is the development of theory, and a model who purpose is measurement. Our767

conjecture is that the more complex aspects of behavior are not reliably identifiable in768

typical experiments (i.e., those not specifically designed to measure such processes). When769

such complexity is not present in the data, then the models will tend to over-fit, and770

thus yield less reliable parameter estimates. As such, we suggest that models with fewer771

parameters, and fewer assumptions, are more appropriate tools for cognitive psychometrics.772

For example, a hierarchical Bayesian implementation of a diffusion model that excludes all773

forms of between-trial variability (c.f., Wabersich & Vandekerckhove, 2014) can be used in774

impressively complex applications (Vandekerckhove, 2014), as can the simple linear ballistic775

accumulator model (Jones, Hawkins, & Brown, 2015).776
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Model Selection777

A related statistical issue concerns how one decides which experimental manipula-778

tions influence which model parameters. For example, how does one decide whether it779

is drift rate, response thresholds, or non-decision processes that differ across the factors780

of an experiment? There are many approaches to dealing with this issue. One common781

method is to estimate the drift rate, threshold, and non-decision parameters freely, and782

use a null-hypothesis statistical testing to determine whether there exist any differences in783

those parameters across conditions (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004; Voss,784

Rothermund, & Voss, 2004). Given the known issues with both null hypothesis testing and785

parameter estimation for RT models, this approach can be problematic.786

Another common approach is to treat the question as a model selection problem. The787

question is whether model A, which is one particular parameterization of an RT model, gives788

a more parsimonious account of the data than model B, an alternative parameterization of789

the same model. The two parameterizations might differ in whether they allow drift rate790

to differ between the experimental conditions, or threshold to vary, for example. Standard791

model selection approaches like the Akaike and Bayesian Information Criteria are easy to792

use, but carry with them their own respective issues, such as being too lenient or punitive793

with respect to model complexity. It is often useful to carry out bootstrapping simulation794

studies to determine which of these criteria are appropriate (see Wagenmakers, Ratcliff,795

Gomez, & Iverson, 2004).796

Ideally, one would use more principled model selection techniques such as minimum797

description length, or Bayes factors (Myung, 2000). At the moment, such approaches are798

too computationally expensive for RT models. At present, computational shortcuts, such799

as the Savage-Dickey test (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), allow800

us to estimate Bayes factors for nested models. However, in our experience, these shortcuts801

have not been quite as reliable as hoped. Cross validation methods have been very useful,802

but come at a substantial cost in terms of computational time. Cross validation for an803

RT model usually involves leaving out a small fraction of each subject’s data, then fitting804

the model to the remaining data. The fitted model is then compared to the left-out data805

and a goodness-of-fit calculated. This procedure is repeated several times, with different806

sets of left-out data, and results averaged. The average goodness-of-fit to the left-out data807

provides an easy way to compare different models, without relying on precise parameter808

estimation, and while being sensitive to model complexity. One ongoing practical issue809

with cross validation concerns the relative sizes of the calibration and validation data sets.810

This choice creates a bias-variance tradeoff, with no one-size-fits-all solution.811

Model Fit812

An important assumption of any cognitive psychometric use of an RT model is that813

the model adequately fits the data. The principle is that one should only ruly upon the814

inferences from an RT model if it adequately mimics the observed data. Unfortunately,815
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there are relatively few good methods for assessing the quality of agreement between ob-816

served data and the predictions of the RT model (i.e., given a particular set of parameters,817

or distribution of parameters).818

Currently, the standard approach is to plot the model predictions alongside the819

observed data and ask whether the model is doing a “good enough” job. The difficulty, of820

course, is how one determines what qualifies as good enough. One approach is to find a821

version of the RT model that has enough parameters that it gives a near perfect account822

of the data. The idea is that this more complex model is almost certainly over-fitting the823

data. If the simpler parameterization provides a more parsimonious account of the data824

than the saturated model, according to one or more model selection metrics, then one can825

argue that the simpler version of the model fits sufficiently well.826

It is worth noting that again the distinction between assessing fit for the purpose of827

theory development and for the purpose of cognitive psychometrics. From a psychometric828

perspective, provided that the most reliable and important features of the data are cap-829

tured, it is probably safe to draw inferences from simpler models, even though they may830

not capture the full spectrum of observed data patterns (e.g., the relative speed of cor-831

rect and error responses). From the perspective of theory development, however, it seems832

much more important that all data patterns are captured, whenever they are demonstra-833

bly reliable. Often times, it will simply come down to the quality of the data. Generally834

speaking, the data collected to develop and test theory is of much higher quality than that835

collected for typical cognitive psychometric applications. As such, many of the caveats we836

discuss relating to theory development and cognitive psychometrics follow directly from837

considerations of model parsimony and avoiding over-fitting.838

Summary839

RT data, especially those arising from repeated simple decisions, continue to be840

extremely informative in a very wide variety of psychological research fields. It can be841

misleading to separately analyze mean RT and accuracy, and so the past fifty years has842

seen the development of sophisticated decision-making theories that allow joint analysis of843

the two measures. These theories are based on the idea that evidence about the decision844

accumulates over time, and a decision is triggered when a sufficient amount of evidence is845

gathered in favor of one choice over another. Evidence accumulation models have proven846

extremely successful, both as mechanistic explanations of the cognitive processes underlying847

decision-making, and as tools for the estimation of cognitive components contributing848

to observed effects. The models have been applied to data from a very wide array of849

experiments, in both applied and basic research.850

Recent work has also linked the process of evidence accumulation with neural pro-851

cesses which might support decision-making behavior, and with analyses of statistical opti-852

mality which might explain the goals decision-making behavior. The links with neural data853

have been made very detailed by neuroimaging of human decision-makers, and electrophys-854
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iological recordings from non-human primate decision-makers. The early theories of neural855

mechanisms of decision-making bore many similarities to the early cognitive theories of856

decision-making, and these similarities have been explored in detail since, leading to well-857

unified cross-disciplinary accounts. Statistical theories of optimality in decision-making are858

also similar to early cognitive accounts of decision-making, but subsequent investigation of859

the similarity has not proven quite as fruitful as in neuroscience.860

For many years, the routine application of evidence accumulation models to data861

was made difficult by the mathematical and computational problems involved in parameter862

estimation. More recently, these barriers to use have been reduced, by the development863

of simpler models and of more user-friendly and general-purpose analysis software. These864

developments have created a large and diverse community of researchers who analyze RTs865

using evidence accumulation models, and who further develop the models themselves, from866

very different perspectives. With such support, we anticipate a bright future for decision-867

making research.868

BOXES869

BOX: How to plot choice RT data870

The data from a single condition in a decision-making experiment form a joint distri-871

bution over response choice and RT. That is, there are separate RT distributions for each872

response choice, but these distributions are of different sizes, such that their area adds up873

to one, across all different responses. Figure 3 provides three common ways to visualize874

the data from a single condition within a typical experiment. To create the figures, we875

simulated data to mimic performance in a standard two-choice experiment. This data may876

represent the behavior of a single individual who made one response on approximately 80%877

of trials, and took about 750 ms to respond on average.878

The leftmost plot shows this simulated data as a pair of histograms. To create this879

histogram, the RT data for each response were binned into 50 ms chunks. The dominant880

response is plotted in green, and the less frequent response in red. The main advantage of881

histograms is that they are easy to interpret. We can immediately see the positive skew of882

the RT distribution, and the relative frequency of the two responses is fairly clear – there883

are many more responses in the green distribution than the red. However, histograms are884

rarely used to compare the predictions of RT models with observed data. The three main885

disadvantages of histograms are: (a) it is easy to hide discrepancies between a model and886

data, due to the flexibility permitted when choosing the size of the bins; (b) they can make887

very complex plots, if there are many different experimental conditions to display; and (c)888

it is difficult to present aggregated data. For example, if one were to plot the distribution889

of all individuals’ RTs as a histogram, there is no guarantee that the shape of the histogram890

would reflect the properties of the individuals.891

The center plot is a cumulative distribution function plot (CDF). These plots provide892

an efficient means of simultaneously illustrating accuracy and the shape of the correct and893
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Figure 3. Simulated data from a two-choice experiment are plotted in three different, but common,
methods. The details of these plots, and their relative merits and drawbacks are discussed in text.

incorrect RT distributions. Each plot is made up of quantile estimates from the two RT894

distributions. The quantile estimates show the RT below which 10%, 30%, 50%, 70%895

and 90% of the responses in that distribution fall. The positions of the quantiles on the896

x-axis reflect the speed at which responses are made, so that slower distributions stretch897

further to the right. The heights of the functions indicate, separately for each response,898

the absolute cumulative proportion of responses with RTs below the quantile cutoff. So,899

as a particular response becomes more dominant, the distance between the green and red900

functions increases. CDF plots are more difficult for some people to read than histograms,901

but they support averaging across participants very well (the quantiles are calculated for902

each participant, and those are averaged).903

Finally, the rightmost plot is a quantile-probability plot (QP), which plots exactly904

the same summary statistics as the CDF plot, but in a different way. QP plots are an905

efficient way of displaying the important information from a set of choice RT data the906

horizontal axis contains response probability (accuracy) information and the vertical axis907

contains information about the RT distribution. Unlike the CDF plot, the quantiles of the908

RT distributions are plotted above one another, and the accuracy information is given by909

the position of the quantiles on the horizontal axis. One advantage of QP plots over CDF910

plots is that results for more than one condition can be given in the same graph. This911

often works well when the conditions differ sufficiently in accuracy.912

Both CDF and QP plots easily permit comparison of group-level model predictions913

and data. Group QP or cumulative probability plots can be obtained by averaging quantiles914
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and probabilities for each individual, also have the advantage that they tend to be more915

representative of individual results (e.g., such averages do not suffer from the problems that916

occur with histograms Rouder & Speckman, 2004). To represent the model predictions on917

these plots at the group level, one calculates the model’s predicted quantiles for each918

individual and averages these together in the same way as the data. This means that we919

apply the same averaging process to create summary information for model predictions920

as for the data, and so both summaries are subjected equally to any distorting effects of921

averaging.922

BOX: Some application areas923

Evidence accumulation models of choice RT are increasingly used to examine the924

psychological processes underlying rapid decisions. Since the parameters of evidence ac-925

cumulation models quantify different aspects of the decision process, variations among926

experimental conditions in model parameters can provide insights into latent psychological927

processes beyond those available from traditional measures. Theories based on the idea of928

evidence accumulation have been successfully applied to many different paradigms, includ-929

ing: simple perceptual decisions (Usher & McClelland, 2001), visual short-term memory930

(P. L. Smith & Ratcliff, 2009), absolute identification (Brown et al., 2008), lexical decision931

(Ratcliff, Gomez, & McKoon, 2004; Wagenmakers et al., 2008), and the neural correlates932

of behavioral measures (Farrell, Ratcliff, Cherian, & Segraves, 2006; B. U. Forstmann et933

al., 2008; Ho et al., 2009).934

Evidence accumulation models have been used as tools for the measurement of cog-935

nitive processing (see the section on “cognitive psychometrics”) in a vast array of different936

paradigms, including: consumer choice (Busemeyer & Townsend, 1992; Hawkins et al.,937

2014); understanding the cognition of people with depression (White, Ratcliff, Vasey, &938

McKoon, 2009; Ho et al., 2014); personality traits (Vandekerckhove, 2014); pain sensitivity939

(Wiech et al., 2014); car driving (Ratcliff, 2015); video game pratice effects (van Raven-940

zwaaij, Boekel, Forstmann, Ratcliff, & Wagenmakers, 2014); psychopharmacology (Winkel941

et al., 2012); and many others.942

Evidence accumulation models have traditionally been developed for, and applied to,943

very simple decision tasks – decisions that take less than a second to make, about single-944

attribute stimuli such as luminosity, loudness, motion, or orientation. In recent years,945

evidence accumulation models have been extended to much more sophisticated decision-946

making scenarios, including:947

• Multi-attribute choices, such as are frequently faced by consumers, where prod-948

ucts vary on price, quality, availability, looks, and many other attributes (Busemeyer &949

Townsend, 1992; Trueblood, Brown, & Heathcote, 2014; Krajbich & Rangel, 2011).950

• Decisions with more complicated response mappings. The standard decision task951

has a simple one-to-one mapping between stimuli and reponses (“press the left button if the952

stimulus is blue”), but many interesting tasks have more complex response rules, such as the953

go/no-go task, the stop-signal task, and the redundant signals task. Evidence accumulation954
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models have recently been extended to all of these (Gomez, Ratcliff, & Perea, 2007; Matzke,955

Love, & Heathcote, 2015; Palada et al., n.d.; Eidels, Donkin, Brown, & Heathcote, 2010;956

Donkin, Little, & Houpt, 2014; Houpt, Townsend, & Donkin, 2014; Endres & Finn, 2014).957

• Decisions involving more than one response for each choice, such as “best-worst958

scaling” tasks (Hawkins et al., in press)959

• Tasks in which responses may come from a mixture of latent processes, such as960

slot-based models of visual working memory (Donkin, Nosofsky, Gold, & Shiffrin, 2013;961

Nosofsky & Donkin, 2016), or from more complex rules (Fific, Little, & Nosofsky, 2010;962

Little, Nosofsky, & Denton, 2011; Little, Nosofsky, Donkin, & Denton, 2013).963

BOX: How the diffusion model works.964

In the diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 2000; Wagenmakers, 2009;965

van Ravenzwaaij & Oberauer, 2009), stimulus processing is conceptualized as the noisy966

accumulation of evidence over time. A response is initiated when the accumulated evidence967

reaches a predefined threshold (Figure 4).968

The diffusion model applies to tasks in which the participant has to decide quickly969

between two alternatives. For instance, in a lexical decision task, participants have to970

decide whether a letter string is a valid word, such as RUN, or a nonword, such as NUR.971

The RTs in such tasks generally do not exceed 1.0 or 1.5 seconds. The four key parameters972

of the diffusion model are (1) the speed of information processing, quantified by mean973

drift rate v; (2) response caution, quantified by boundary separation a; (3) a priori bias,974

quantified by mean starting point z; and (4) mean non–decision time, quantified by Ter.975

The model assumes that the decision process starts at z, after which information is976

accumulated with a signal–to–noise ratio that is governed by mean drift rate v.1 Concep-977

tually, drift rate captures a range of factors that affect information accumulation, including978

characteristics of the stimuli, the task, and the participant. Small drift rates (near v = 0)979

produce long RTs and high error rates. Boundary separation (a) determines the speed–980

accuracy tradeoff; lowering boundary separation leads to faster RTs at the cost of a higher981

error rate. A starting point of z = .5a indicates an unbiased decision process. Together,982

these parameters generate a distribution of decision times DT . The observed RT, however,983

also consists of stimulus–nonspecific components such as response preparation and motor984

execution, which together make up non–decision time Ter. The model assumes that non–985

decision time Ter simply shifts the distribution of DT , such that RT = DT + Ter (Luce,986

1986). The full diffusion model includes parameters that specify across–trial variability in987

drift rate, starting point, and non–decision time (Ratcliff & Tuerlinckx, 2002).988

1Mathematically, the change in evidence X is described by a stochastic differential equation dX(t) =
v·dt+s·dW (t), where W (t) represents the Wiener noise process (i.e., idealized Brownian motion). Parameter
s represents the standard deviation of dW (t) and is usually fixed.
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BOX: How the LBA model works.989

Figure 5 illustrates decision processing in a pair of LBA units. Suppose that the990

figure represents a decision about whether a cloud of dots appears to be moving to the991

left or to the right, requiring a “left” or “right” response, respectively. Presentation of the992

stimulus causes evidence to accumulate for both the “left” and “right” responses separately,993

as indicated by the two lines (one solid and one dotted) in Figure 5. The vertical axis of the994

figure represents the amount of evidence that has been accumulated, and the horizontal axis995

shows how much decision time has passed. The amount of evidence in each accumulator996

increases linearly until one reaches the response threshold, and the decision time is the997

time taken for the first accumulator to reach threshold. The predicted RT is made up of998

the decision time plus a non-decision time, quantified by parameter Ter.999

The slopes of the lines in Figure 5 indicate the rates at which evidence is accumulated1000

for each response, and are usually referred to as the drift rates. If the physical stimulus1001

favors a “left” response, the drift rate for the “left” response accumulator will usually1002

be larger than for the “right” response accumulator. Drift rates are assumed to be set1003

by physical stimulus properties and by the demands of the task. For example, in the1004

random dot motion task, decisions might be made easier by making the displayed dots1005

drift more steadily in one direction. This would provide stronger evidence that “left” was1006

the correct response, and the drift rate for that response would increase. Drift rates are also1007

assumed to be modulated by sensory and attentional processing, and the overall efficiency1008

of the cognitive system. For example, Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann1009

(2007) found larger drift rates for participants with higher working memory capacity and1010

fluid intelligence. In the LBA, there are two different drift rates: one for each accumulator1011

(corresponding to “left” and “right” responses). The relative size of drift rate parameters1012

describes differences in task performance between different conditions or groups. Although1013

not explicitly illustrated in Figure 5, drift rates in the LBA are assumed to vary randomly1014

from trial-to-trial according to a normal distribution with mean v and standard deviation1015

s, reflecting trial-to-trial fluctuations in factors such as attention and arousal.1016

The amount of evidence in each accumulator before the beginning of the decision pro-1017

cess also varies from trial-to-trial. The starting evidence for each accumulator is assumed1018

to follow a uniform distribution whose minimum value is set (without loss of generality) at1019

zero evidence for all accumulators, and whose upper value is determined by a parameter A.1020

Hence, the average amount (across trials) of evidence in each accumulator before accumu-1021

lation begins is A
2 . The height of the response threshold that must be reached is called b,1022

and is represented by the horizontal dotted line in Figure 5. The value of b relative to the1023

average starting activation (A2 ), provides a measure of average response caution, because1024

the difference (b − A
2 ) is the average amount of evidence that must accumulate before a1025

response will be triggered. In Figure 5, the same response threshold (b) is used for both1026

accumulators; this indicates that the same amount of evidence is required, on average,1027

before either response is made. If participants choose to favor one particular response (i.e.,1028
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a response bias), b and/or A might be smaller for the preferred response. Response bias1029

leads to a speed-accuracy trade-off, as the preferred response is made more quickly, but it1030

is also made more often when incorrect, reducing accuracy.1031

The time taken for each accumulator in the LBA to reach threshold on any given trial1032

is the distance between the response threshold and the start point of activation, divided1033

by the rate of evidence accumulation. The observed decision time on any given trial,1034

however, is the time for the fastest accumulator to reach threshold. The formula for the1035

distribution across trials of the time taken for the fastest accumulator to reach threshold is1036

given by Brown and Heathcote (2008); Terry et al. (2015). This formula makes it possible1037

to estimate the model’s parameters from data.1038

The original formulation of the LBA model, described above, assumed normal dis-1039

tributions for the variability in drift rates from trial to trial. This creates a conceptual1040

problem because it necessarily means that some drift rates, on some trials, will be negative,1041

potentially leading to undefined RTs. Although this problem has not so far proven practi-1042

cally important, it has been addressed in recent work by Terry et al. (2015). This work has1043

shown how the analytic tractability of the LBA model can be maintained even when using1044

a variety of different drift rate distributions which are all constrained to positive values1045

only (such as the gamma and lognormal distributions).1046

END BOXES1047
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Figure 4. The diffusion model and its key parameters. Evidence accumulation begins at z, proceeds
over time guided by drift rate v, is subject to random noise, and stops when either the upper or
the lower boundary is reached. The distance between the boundaries is a. The predicted RT is just
the accumulation time, plus a constant value for non–decision processes Ter.
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Figure 5. A typical LBA decision. In the illustrated trial, evidence is gathering more quickly in
favor of deciding that “left” than “right”. The decision will be made as soon as an accumulator
reaches the threshold, shown by the dashed line.


